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PRINCIPAL NOTATION
coefficients in modified virial formulation of the thermal
equation of state (ch. k)
van der Waals parameter (ch. 5)

linear acceleration of noninertial system (may be taken to
include any body forces)

x and y components of a (dimensional or dimensionless;
see egs. (2.95))

van der Waals parameter (ch. 5)
specific heat at constant pressure, (Bh/BT)p
specific heat at constant volume (or density), (Be/aT)p

total internal energy in the tank; also displacement opera-
tor in chapter 3

specific internal energy

Cartesian unit base vectors in the directions of x, y, 2
(with e3 along the rotation axis)

unit vectors, respectively, in the directions of increasing
r, 8, 2 in cylindrical coordinates

unit vectors, respectively, in the directions of increasing
r, ¢, 8 in spherical coordinates (fig. 2.3)

continuous temperature distribution function (ch. k)
discrete temperature distribution function (ch. 5 and 6)

dimensionless forms of apparent-body-force components
(ch. 2)

Grashof number (egs. (2.95b))

total apparent body force per unit mass in the noninertial
system

x and y components of g

functions in the modified virial formulation of the equa-
tions of state (ch. L)




g .8 r and 6 components of g 1in cylindrical coordinates
r’>8 i

H dimensionless temperature (egs. (2.95) in ch. 2)

h specific enthalpy

I unit tensor in chapter 2; unit matrix in chapter 3
i /-1

JH JM-1 in chapter 3

JM,KM maximum values of the indices Jj.k

J index for finite differencing in x direction

k thermal conductivity; also index for finite differencing in ¥y
direction

L arbitrary reference length; also an integer in chapter 3

L length of side of square tank; also a recursion index in chapter 3

M mass of oxygen in the tank; also integer equal to JM-2 in chapter 3

N index for discrete temperature distribution function and corresponding

thermodynamic variables (see ch. 4 and 5)

n index for finite differencing in time (ch. 3 and 5)

Pr Prandtl number, povcp/k

P thermodynamic pressure

P, pressure calculated from an analytical representation in chapter U

P pressure p modified to give a true physical representation when
p p, is muftivalued (ch. k)

Pv(T) vapor pressure

q heat flux vector

R perpendicular vector from axis of rotation to point of interest
(ch. 2)

R¥ position vector from fixed point on axis of rotation to a point in

the noninertial (rotating) system (ch. 2)

R gas constant; also magnitude of vector R 1in chapter 2

vi



Ry >R2
Re

r,0,z

r5¢76

vr’ve’vz
vr,v¢,ve
jk

X’y,z

distance from axis of rotation to center of tank
x and y components of R

Reynolds number, QOLZ/v

cylindrical coordinates fixed relative to tank, with origin at
tank center and with 6 measured from perpendicular to Rc

spherical coordinates fixed in a rotating system, depicted in
figure 2.3

unit step function

temperature of fluid

temperature of fluid averaged over space
reference temperature (see ch. 5)

time

dimensionless velocity in x direction (egs. (2.95)); also
internal energy function in chapter 4

X,y,z components of V
fluid velocity relative to noninertial system fixed on the tank
velocity projection defined in various ways in chapter 2

dimensionless velocity in y direction (egs. (2.95)); also volume
in chapter 5

volume of oxygen tank

r,6,Z components of

1<

r,$,0 components of V

computational weighting function (ch. 4 and 5)

Cartesian coordinates fixed relative to the tank, with origin at
one corner

compressibility factor in thermal equation of state

isothermal compressibility coefficient at state Pys TO in .chap~
ter 2; also Courant number in chapter 3

thermal-expansion coefficient at state p

: o° TO in chapter 2; also
pAt/(AE)4 in chapter 3




viii

(o =0 )0
dimensionless coordinate, y/L
bulk viscosity coefficient

second viscosity coefficient in chapter 2; also ratio ¢(t+AT)/¢(7T) in
chapter 3

eigenvalue of a matrix in chapter 3

coefficient of shear viscosity in chapter 2; also a model diffusivity
in chapter 3

kinematic viscosity coefficient, (u/p)o
dimensionless coordinate, x/L

density of fluid

density of fluid averaged over space
total stress tensor

viscous stress tensor

dimensionless time (egs. (2.95)); also dimensionless temperature in
chapter 4, eq. (k.25)

viscous dissipation fumection, (1/u)T:VV

time~dependent scalar potential of acceleration a in chapter 2; also
a model dependent variable in chapter 3

dimensionless stream function (egs. (2.95))

stream function representing V¥ in chapter 2

vector and magnitude of time-dependent angular velocity of noninertial
system relative to inertial system; § = e3l; (either dimensional or
dimensionless; egs. (2.95))

respectively, dQ/dt and aQ/dt

constant reference value of Q

vorticity vector, curl V

z component of vorticity (either dimensional or dimensionless; egs.

(2.95))



col

SL

sV

()

()

Subscripts
thermodynamic state at the critical point
collapse state (ch. 4 and 5)
index for finite differencing in x direction
index for finite differencing in y direction

index for discrete temperature distribution function and corresponding
thermodynamic variables (ch. 4 ana 5)

index for finife differencing in time

saturated liquid

saturated vapor

slowly varying value of a thermodynamic variable averaged over all
space (except for QO); also a value corresponding to a reference
temperature of 55° K in eq. (4.5b); also an initial value in
chapter 5

Superscripts

index for finite differencing in time

slowly varying value of a thermodynamic variable averaged over all
space

value computed from "predictor" in chapter 3




1. AN OVERVIEW OF THE ROTATING SPACECRAFT-TANK

CONVECTION PROBLEM
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SUMMARY

This introductory article provides the background for the succeeding
articles comprising a study of convection in the tanks of a rotating space-
craft. The discussion relates the analysis of mixing of a stratified fluid in
a supercritical cryogenic state (e.g., oxygen, in which mixing fans may not be
used) to spacecraft such as Apollo and orbiting space stations.

INTRODUCTION

This report describes a general study of convection and mixing of a strat-
ified fluid in a rotating container and its application to the special problem
of fluid heating and convection in a spacecraft tank. In a rotating container,
spatial variations of temperature and density lead to "natural convection"
under the action of the effective body forces induced by the rotation. Simul-
taneously, time-dependent rotation of the container may induce "forced convec-
tion" coupled with the effects of stratification (see ch. 2).

The study reported here began with the need to analyze the oxygen storage
system used in an Apollo spacecraft, as outlined in the next section. There-
fore, although the study applies to spacecraft fluid storage systems in gen-
eral (including, e.g., orbiting space stations), the following conditions are
imposed (at certain stages in the study) in the specific application to an
Apollo oxygen tank: the fluid considered is oxygen in a supercritical cryo-
genic state, near the critical point (where the fluid is not distinguishable
as being either a gas or a liquid); the system is free of gravitational
forces; and the container is rotating about a noncentral axis.

In a near-critical thermodynamic state, a fluid such as oxygen may
undergo a phenomenon known as "pressure collapse,” which is a local rapid
decrease in pressure resulting from the sudden mixing of a thermally strati-
fied fluid. The potential pressure drop (also called "potential pressure
decay" and "potential for pressure collapse") is defined as the difference
between the pressure in a thermally stratified environment and the pressure
that would be present if the stratified fluid were suddenly mixed adiabati-
cally into a uniform state. Thus, because of the nature of the state rela-
tions in the near-critical region (where the state is highly sensitive to
changes in temperature), sudden mixing of a significantly stratified super-
critical fluid results in a substantial pressure drop. From many state
points, such an occurrence would drive the fluid into the undesirable two-
phase state, where vapor and liquid can coexist. The sudden decrease in pres-
sure may render inoperative the systems (such as fuel cells and life support)
intended to be supplied by the oxygen-~storage system. This phenomenon of
pressure collapse can be prevented by limiting the stratification, which is
done by keeping the fluid sufficdiently mixed. (Slow mixing limits the
possibility of sudden mixing.)

From the above description, one can surmise that results of calculations
of flow of a near-critical fluid may be highly dependent on accurate




representation of the thermodynamic properties (cf. ch. 4 and 6). Near-
critical fluids also have low viscosity coefficients and high thermal expan-
sion coefficients (ref. 1, p. 660 ff) so there will be strong coupling between
the natural convection and the forced convection due to time-dependent
rotation (ef. ch. 2).

The goals of the study reported here are to simulate - by numerical anal-
ysis and computation - the fluid motion, the energy transfer, and the mixing
of a fluid under the above conditions, and to determine in particular the
effectiveness of the mixing resulting from rotation maneuvers in reducing the
potential pressure drop in the cryogenic oxygen-storage system used in space-
craft such as the Apollo.

BACKGROUND FROM APOLLO

In spacecraft such as Apollo, supercritical cryogenic storage of oxygen
and hydrogen is highly desirable because a large mass of the fluid can be
stored at very high density, and therefore in a small volume, at pressures low
enough for reasonably lightweight tanks.

The Apollo oxygen tanks are located in the service module as shown in
figure 1.1 for Apollo 13. The tanks are spheres with inside diameters of 25
in. and with distances from the spacecraft axis to the sphere centers of 3 ft
(tank 1) and about 5 ft (tank 2). With the assumption that the center of mass
of the vehicle is on the central axis, these distances are then the "rotation
arms" of the spheres when the vehicle rotates in space. Each tank is loaded
initially with 330 1b of liquid oxygen. The oxygen is then heated by an
internal electrical heater (see fig. 1.2) to completely vaporize the oxygen.
Subsequently, the heater is operated periodically to maintain a system design
pressure of 900 #35 psia. The maintenance of system pressure by the heater
operation is required because pressure is changed both by "heat leak" (heat
conduction into the tank) at the imperfectly insulated wall and by withdrawal
of fluid from the tank. Pressure sensors switch on the heater when the pres-
sure drops to the desired lower limit and switch off the heater at the upper
pressure limit. These "heater cycles" and corresponding "pressure cycles' are
discussed in chapter 6.

If there were no convection of the fluid (in zero gravity) during heater
operation, strong temperature and density gradients would develop because of
the inefficiency of pure heat conduction for energy transfer. FEach heater
cycle results in increasingly severe gradients; therefore, a significant
potential pressure drop would develop so that a small subsequent acceleration
could result in pressure collapse. Adequate slow mixing of the fluid there-
fore is required to prevent severe stratification.

In manned space missions prior to Apollo 1k, electrically driven fans
inside the oxygen tanks (see fig. 1.2) were used to ensure sufficient circula-
tion of the fluid. A series of incidents resulted in electric arcing of the
fan wiring in the no. 2 oxygen tank of Apollo 13, with conbustion of Teflon
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Figure 1.1— Arrangement of fuel cells and cryogenic systems in bay 4 of Apollo 13 service module.
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Figure 1.2.— Oxygen tank no.2 internal components by the team, one problem was to deter-
(Apollo 13). mine the adequacy of vehicle rotation
and maneuvers to produce sufficient
convection for the required mixing in
the oxygen tanks, without fans. The contributions by Ames Research Center
were based on the studies described in this report; preliminary resulis were
reported at a meeting of the analysis team by B. Baldwin and Y. Sheaffer in
January 1971 and at the NASA-MSC Cryogenics Symposium by B. Baldwin, E. D.
Martin, W. A. Reinhardt, and Y. Sheaffer in May 1971.
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APPROACH AND SCOPE OF THE STUDY

The format of this report, a collection of separate but related articles
as chapters, is used because each article makes contributions both to the
overall subject of the report and to general knowledge in separate specialized
fields.

In chapter 2, Martin and Baldwin develop a set of approximate equations
for the Navier-Stokes description of fluid convection in a rotating system,
including the influence both of effective buoyancy body forces due to tempera-
ture and density stratifications and of arbitrary time-dependent rotation and
acceleration of the tank. The equations represent a small-density-variation
approximation that is valid under conditions of low relative velocity but with
significant density and temperature variations. All relevant terms represent-
ing effects of rotation and changes in rotation are included. For example,
the analysis includes the Coriolis terms known to be significant in the three-
dimensional flow, as shown by experiments with dye injected into a water-
filled rotating sphere (unpublished results by J. F. Lands, Jr., and R. C.
Ried, Jr., reported at a meeting of the Apollo Tank Analysis Team in January
1971). The equations are valid for combined forced and contained natural con-
vection, whereas previous treatments of convection in rotating systems had
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dealt with either pure natural convection or pure forced convection. For sub-
sequent computations, the two-dimensional square-tank problem is formulated.

In chapter 3, Lomax and Bailey describe a numerical finite-differencing
scheme for computing the convection of vorticity and energy in a two-
dimensional rotating tank, starting with the partial differential equations
derived in chapter 2. The highly efficient computational method employs at
each time step a Buneman Poisson solver for the Poisson equation relating the
stream function to vorticity, and uses MacCormack's method for the transport
equations for vorticity and energy.

Reinhardt then develops efficient and versatile methods for the numerical
evaluation of thermodynamic properties of cryogenic oxygen from semiempirical
equations (ch. 4). For reasons discussed above, accurate thermodynamic-
property representations are needed for computations in the near-critical
region. In the efficient methods developed, an arbitrary choice of indepen-
dent state variables is allowed. A procedure for the rapid evaluation of
volume integrals of spatially dependent quantities is introduced that depends
on temperature distribution functions. By this method, insignificant losses
in accuracy are accepted in exchange for significant savings in computation
time.

In chapter 5, Baldwin, Reinhardt, and Sheaffer discuss how the results
based on the small-density-variation approximation (with density considered
only as a function of temperature and with pressure as a slowly varying
parameter) can be interpreted to determine the thermodynamic quantities. The
latter include the slowly varying average pressure, the actual density dis-
tribution, and the potential pressure drop. The problem of evaluating the
time-dependent thermodynamic state of stratified fluid is considered based on
(1) van der Waals equations of state, and (2) more exact thermodynamic
relations.

In chapter 6, Baldwin, Reinhardt, and Sheaffer present results of the
numerical simulation for studying the effectiveness of rotation reversal and
spinup from rest on mixing stratified oxygen in the Apollo storage tanks. The
computations are two-dimensional simulations based on the complete eguations
developed in chapter 2, with use of the methods from chapters 4 and 5 for the
accurate thermodynamics and efficient evaluations, and with use of the compu-
tational method described in chapter 3. The significant effects of the rota-
tion maneuvers on the potential pressure drop are discussed.

Each chapter concludes with a list of references.
REFERENCE

1. Ostrach, S.: Laminar Flows with Body Forces. Section F in Theory of
Laminsr Flows, F. K. Moore, ed., Vol. IV of High Speed Aerodynamics and
Jet Propulsion, Princeton Univ. Press, 1964, pp. 528-T18.
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SUMMARY

A set of simplified equations is derived that represents a small-density-
variation approximation of the Navier-Stokes equations for combined forced and
contained natural convection of a stratified fluid. These equations reduce to
a generalization of the Boussinesq approximation in the special case of steady
rotation with (variable) buoyancy body forces, but also properly represent the
forced convection due to time-dependent rotation. For use in subsequent
numerical computations, the problem of convection in a rotating square tank
with temperature and density stratifications is formulated.

INTRODUCTION

In this chapter, eguations for fluid convection in a tank with arbitrary
time~dependent rotation are developed from the Navier-Stokes equations. Sim-
plified forms of these equations are obtained for use in numerical computation
of the fluid convection in noninertial coordinate systems. Conditions assumed
to exist in the rotating tank are small temperature and density variations and
small apparent body forces.

To clarify the relationship of the present problem to other convection
problems, consider the terminology of, and conditions for, various classes of
convection. Two special cases of convection (flow) are forced convection and
natural convection (see Prandtl, ref. 1, pp. 396 and 412). Natural conmvection
is further divided into cases of free convection and contained nabtural convec-
tion. Natural convection implies that no causes of the motion exist other
than effective body forces acting on portions of the fluid with density varia-
tions due to thermal expansion. In that case, effects of pressure and appar-
ent body forces can be expressed entirely in terms of buoyancy forces. The
fluid convection associated with the present problem is generally a combina-
tion of natural and forced convection. In the special (or limiting) case of
steady rotation it reduces to the state of contained natural convection.

Whenever a fluid flow is at low velocity relative to boundaries, with
relatively small accompanying temperature and demsity variations, one usually
considers the highly simplifying assumption of "constant density” of the fluid
flow. A complication arises, however, when temperature differences, producing
density variations that are acted upon by body forces, are a significant
cause of the convection. Obviously, density variations must be accounted for
in the body-force terms (the momentum production), if not in other aspects of
compressibility of the fluid flow. The usual approximate method of treating
problems of nearly constant-density flow with "buoyancy" body forces (cf.
ref. 1, p. 412; ref. 2, p. 320; ref. 3, p. 248) is commonly known as the
Boussinesq approximation (e.g., ref. 4, p. 506; ref. 5, p. 684; ref. 6, p. 29),
and has been applied to natural convection driven by constant body forces.
That approximation has recently been generalized to include spatially varying
body forces in a uniformly rotating container (see, e.g., refs. 7-9).

11
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The Boussinesq approximation and its generalization to variable body
forces apply only to pure natural convection, and are not sufficiently general
for present purposes (with time-varying rotation rates producing forced con-
vection). Forced convection in rotating flows of homogeneous fluids has been
studied extensively (e.g., refer to ref. 8), especially with reference to the
"spinup" and "spindown" problems. The early fundamental treatments by von
Kérmén and Cochran and by B&dewadt (see ref. 10, pp. 157-162) showed fundamen-
tal differences between the spinup and spindown problems in three dimensions
because of instabilities. A recent study by Briley and Walls (ref. 11) indi-
cates that these effects also occur in a tank rotating about its center and
lead to Taylor vortices in the spindown problem at some Reynolds numbers. The
rotating forced-convection flows that have been studied did not include strat-
ification effects, that is, body forces due to density wvariations.

In the present study, a small-density-variation approximation is devel-
oped in a manner analogous to the Boussinesq approximation, including both
variable buoyancy body forces in a stratified fluid and the allowance for
forced convection produced by time-varying rotation. Thus, the formulation is
developed both to be consistent with the physics of the time-varying rotation
(forced convection) and to reduce to a formulation for pure natural convection
in the limiting case of steady rotation that is analogous to the Boussinesqg
approximation.

The development procedure is to first write the compressible Navier-
Stokes system of equations in vector form in an arbitrary noninertial frame of
reference. Then the set of equations is reduced to an approximate form for
nearly constant density flow, accounting properly for all body-force terms in
the limit as the temperature and density variations vanish. (It will be seen
that both the momentum and energy conservation equations require special con-
sideration for the present problem.) For convenience in numerical analysis,
the equations are then cast in terms of the vorticity and stream functions.
The special case of a constant inertial axis of rotation and the further spec-
iglizgtion to two-dimensional flow are formulated. The two-dimensional equa-
tions in rectangular coordinates are presented for use in computation of con-
vection in a square tank.

Although three-dimensional effects such as axial flow due to Ekman-layver
suction (see, e.g., ref. 8) and development of Taylor vortices (e.g., ref. 11)
cannot be represented in the two-dimensional formulation, the first numerical
treatments of this problem in two dimensions are expected to yield significant
information regarding the adequacy of vehicle rotation to produce sufficient
convection. Because additional convection mechanisms are supplied by three-
dimensional effects, the results from the two-dimensional formulation are
believed to be conservative. -

COMPRESSIBLE NAVIER-STOKES EQUATTIONS IN A TIME-VARYING
ROTATING REFERENCE FRAME

The Navier-Stokes set of equations for compressible flow in a noninertial
(rotating and accelerating) reference frame is

12



Do, by -y =0 (2.2)

Dt ~
)'f
P =~V +V c 1+ pg (2.2)
De
p_D?=_pY.Y_Yoq+u¢ (2-3&)

where D/Dt is the substantial-derivative operator

D __3

Dt st YV

and where, for later use, equation (2.3a) may also be written in an equivalent
form, in terms of specific enthalpy (ref. 2, p. 322), as

022 =2B g .g+ o (2.3b)

The set of equations must be supplemented by appropriate equations of state:

p = D(PST)
e = elp,T) = [ c, dT (2.4)
h = h(p,T) = [ c, aT

In the above equations, the Navier-Stokes expression for the viscous stress
tensor 1, defined by

g=-~pl + 1 (2.5)

(where p 1is the thermodynamic pressure, I 1is the unit tensor, and ¢ 1is
the total stress tensor), is

©= AT Tl ¢ ()] (2.6)
where

u shear viscosity coefficient

A Sk - %—u "second viscosity coefficient"

K = —(1/331.:Vg =P bulk viscosity coefficient

(vv) "transpose" of the dyadic VYV

13



Also in equations (2.3), the viscous dissipation function ¢ is defined by

e =t ; VV (2.7)

and the heat-flux vector q 1is given by the Fourier heat-conduction law:

-~

q = —kYT (2.8)

Of primary concern here is the apparent body force per unit mass in the
noninertial system g, which is given by

g=-[a+Q xRt +20 xV+@x (0 xR¥)] (2.9)
where
Q time-dependent angular velocity of the noninertial system rela-
tive to the inertial system
Q B 4e/dt
R¥ position vector from a fixed point (O* on fig. 2.1) on the axis

of rotation of the noninertial system to a point of interest
in the rotating system

Q@ x (Q x R¥) centripetal acceleration due to rotation of the system

20 x V Coriolis acceleration
@ x R¥* linear acceleration due to the angular acceleration @
a = a(t) (time~-dependent) Iinear acceleration of the noninertial system,

in excess of Q x R¥

As an effective body force per unit mass, a may be taken to include any body
forces acting on the gas in the inertial reference frame.

Equations (2.1) through (2.3) are derived directly from the corresponding
equations in an imertial reference frame by substituting for the term
p(DV/Dt), measured relative to the inertial system, the terms

DV .
p[’b‘?*@"B**“?ﬁ}xY*‘Qx(QXB*)‘f%
(cf. Becker, ref. 12, p. 251). The term p(DV/Dt) is the only term in the

inertial system affected by the transformation to a noninertial reference frame
because it is the only time derivative of a vector function (ref. 12).

At this point it is convenient to define a position vector R as the per-

pendicular vector from the axis of rotation to any point of interest determined
by R¥ (see fig. 2.1), such that

1L

ke3>

e



e

Q+R=0 (2.10)
The vector R always lies in a plane
of rotation. TIts origin O moves
along the axis of rotation as the point
of interest inside the tank is wvaried.
Note that

o]
X
feo]

*®
]

0

X

R (2.11a)

Q x R* = Q x R (2.11b)

where the axis of rotation is taken to
be constant in inertial space. With
equations (2.11), R*¥ may be replaced

Figure 2.1.— Position vectors in a rotating system. by R eve here in equation (2.9), or
. - Iryw . »

g=-la+QxR+20xV+@x(QxR)] (2.12)

REDUCTION OF EQUATIONS FOR SMALL-DENSITY-VARIATION APPROXIMATION

Equations of State and Small-Perturbation Theory

It is assumed that pressure and temperature variations, and therefore all
fluid property variations, are small over the space of the tank and relatively
slow in time. The thermal equation of state p = p(p,T) is then written as a
Taylor series about the nearly constant average state defined by

p = p(po,To):
p-o T

O

p_
o
= p {1 - B AT + o 4p + o[ (aT)2,(ap)2]} (2.13)
where
= |zl (3
B = [_p <BT>_} (2.1k4a)
p-o0
is the thermal expansion coefficient at the state Pyo TO,

=L (3
o = [p <Bp>;}o (2.1Lb)

is the compressibility of the fluid at the state Py To’ and

15



AT = T - TO (2.15a)

Ap =D - D (2.15b)

As is customary in convection problems involving buoyancy forces due to
thermal expansion, when pressure gradients are expected to be very small, we
neglect not only terms of O[(AT)2,(Ap)2] in equation (2.13), but also neglect
o Ap in comparison to B AT:

o = po(l - B AT) (2.16)

From the resulting flow computations made using equation (2.16), one can
always check that o Ap/B AT is small everywhere to justify 4 posteriori the
use of (2.16).

By the same procedure as in equations (2.13) through (2.16), the caloric
equations of state in (2.}4) are simplified by assuming the pressure dependence
of e and h to be negligible, so that the differentials de and dh can be
written simply as

de = c_ AT = ( > ar (2.17a)

v

dh = ¢ AT ar (2.17b)

Y

1l
—

The coefficients o, B, o and ¢ must be determined from thermodynamics
and are not considered further in the Bresent article.

The formulation involving the flow equations above with equation (2.16)
substituted everywhere for o can be regarded as a small-perturbation theory

with

p = po(l + 8) (2.18a)
or
0 - o
§ = ——= = - AT (2.180)
pO
where
[s] << 1 (2.19)

so that § can be neglected in comparison to unity. It will be important in
formulating the theory not to neglect p_ 8§ 1in those instances where after sub-
stitution of (2.18a) the term Py effec%ively cancels out of the equations.

Along with the general assumption of small temperature, pressure, and

density variations, the transport properties u and k are taken to be
constants at a given time.

16



If desired, the small-perturbation theory can be extended formally to
higher approximations that supply higher-order corrections for significant AT
and Ap in the Taylor expansions (about the state pg, Dys To) of p, h, and
the transport properties. The formal small-perturbation theory (with appro-
priate emphasis on buoyancy effects to make them of lowest order) yields a
first-order formulation eguivalent to that derived below in a less formal way.

Mass-Conservation and Momentum Equations

In the limit as & -+ 0, one finds conservation of mass (eq. (2.1)), to be
approximated by

V+V=0 (2.20)

This equation can henceforth be used in the flow calculation to represent con-
servation of mass and can be combined with the other equations wherever
appropriate.

In deriving the approximation for the momentum-conservation equation as
§ - 0, one could proceed in a manner equivalent to that for the Boussinesq
approximation only 7f the angular velocity of the tank were constant. In the
present problem, however, we must allow for time-varying angular velocity.
Thus, convection in a rotating tank, with fluid-density variations caused by
temperature variations, falls essentially into two categories:

1. If the angular velocity of the tank is constiant, then the conditions
are met for the limiting state referred to as "contained natural convection."
For that case, in the limit as &§ + 0, the fluid approaches a state in equilib-
rium with the walls (no relative motion), which is equivalent to a rigid body
rotation. If, then, there are small temperature and density variations in the
tank, the resulting flow is entirely a small perturbation on the "rigid-body"
rotation. In that case, no causes of the motion exist (in the reference frame
of the tank) other than the effective body forces acting on portions of the
fluid with density differences due to thermal expansion. Then the effects of
pressure and apparent body forces can be expressed entirely in terms of buoy-
ancy forces, with essentially constant density of the fluid assumed in all
other respects. These are the assumptions of the Boussinesqg approximation used
frequently in special cases of natural convection.

2. If only the axis of the angular velocity is constant (in inertial
space), but the magnitude of rotation changes significantly with time (e.g., a
steady rotation is stopped or reversed), then there are factors producing the
convection other than simply the apparent body forces acting on density dif-
ferences due to thermal expansion. Sudden changes in the boundary rotation
from a previously steady rotation produce boundary layers, with significant
velocities at the boundary relative to the internal core. The rotational
inertia of the core tends to keep it rotating without substantial change,
except for factors such as buoyancy body forces and slight axial flow due to
Ekman-layer suction (e.g., see ref. 8), until affected by diffusion of the vis-
cous forces from the boundary. In this case, the assumptions of natural

17
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convection are violated, and a more general formulation must be used. It
should, however, for present purposes, include the valid approximate formula-
tion of natural convection in the special case where the rotational velocity is
held constant for a period of time.

In the limit as & ~ 0 (p ~ p,), v and k approach constant values at a
given time, and from (2.6) and (2.20),

Voeorsul? ey - (), ]

ulv2y + 9(7 - V)] = uv?y (2.21)

Assuming that only the apparent-body-force term in (2.2) may be affected by
small density variations, we therefore retain ¢ only in that term and write

(2.2) as

= - Up + W2V + (1 + 8)g (2.22)

By manipulating equation (2.22) in various ways, one can determine in what
sense 6 must be retained in (2.22) in the limit as 6§ - 0. For this, various
terms in the gquantity g, given by equation (2.12), can be expressed as gradi-
ents of scalar quantitiés. Those portions of (1 + §)g that can be so
expressed can then be regarded simply as modifications to the pressure gradient
term, (-1/p,)Vp (which is ultimately to be eliminated from the problem). The
various forms equivalent to (2.22) are derived in this and following sections.

First consider the centripetal acceleration, @ x (9 % 3). For arbitrary
vectors A and B the following vector identity holds (ref. 13, p. 270):

Ax(Bx¢C)=(a-C)B- (8- B (2.23)
Therefore
g x (g xRBR) = (@ » R)Q - Q2R (2.2k)
One can write
2 = e3n(t) (2.25)

where €3 is a2 unit vector in the direction of the axis of rotation, so that
with (2.10), eguation (2.2k4) becomes

Q x (@ x R) = -02R = -y[(1/2)Q2R2] (2.26)

Further, consider the fact that since a is, at most, a function of time,
a = a(t), then

v x al(t) =0 (2.27a)
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so that a scalar potential ¢ = R + a(t) can be defined such that

a =Y (2.27p)

satisfies the vector identity

Vx¥V$=0 (2.27c)

Then equation (2.22), with (2.12), (2.26), and (2.27b), becomes

DV .
=== - —l-yPl + W27 + g8 - (@ x R + 2@ x V) (2.28)

Dt Po = e d " L

where

P; =p + po[¢ - (1/2)02r?] (2.29)

(with ¢ and Q@ both depending on time), which may be called the "reduced
pressure" (cf. ref. 8, p. 6, for constant Q).

On the Use of Stream Functions to Reduce the Coriolis Term

Under some conditions, the following procedure introduces further
simplification:

For any arbitrary scalar functions ¢; and P, the vector identity holds
(ref. 13, p. 278):

v s (V¥ % VYp) = 0 (2.30)

To satisfy (2.30), a vector V¥ (to be defined for special cases) can be writ-
ten in terms of ¢, and Y, as

V¥ = Ty x VU, (2.31)

(The vector V¥* is normal to both Vy; and Vy,, and is therefore along the

intersection of the two surfaces ¥j = Cj(t) and yp = Co(t). In cases where
one defines V¥ to be V, equation (2.20) is satisfied by (2.30); the surface
intersection is then a streamline and y; and Y, are "stream functions."

With equation (2.31) and use of the identity (2.23), the Coriolis accel-
eration can be written as

20 x V= 20 x (T x T¥p) + 22 x (V - V¥)

2[(Q « YY)vyy —- (@ « Vyp)Vyp] + 20 x (V ~ V¥*) (2.32)

Use of this expression is convenient only in some special cases.
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Case 1. No special restrictions—With no special restrictions, it is just
as well to use (2.28) without (2.32) because use of ¢; and P, in (2.32)
appears to offer no simplification.

One considers then in (2.28) (in the limit as & -+ Q) omitting the parts
of g in the term g6 that are the same as the remaining body forces:
- xR - 20 x V. However, if it should happen (as is true in some cases) that
the Coriolis force term (—2@ x V) is exactly balanced by part of the pressure
gradient and is effectively eliminated from the problem, then that part of g
should 7not be omitted from the term g§ for small &§. Therefore, if the N
effects of 20 x V are unknown, it is better to leave 20 x ¥ in g in the term
of order &, as well as in the body force term without the factor 4.

Case 2. No flow changes in =z direction—Let e3 be a unit vector in the
z direction, also the direction of Q(t) (eq. (2.25)). Call the plane =z = 0
the xy plane (although other coordinates may be used in the plane). Let Y*
be the velocity projection in the =xy plane, so that

V = V*(x,y,t) + egw(x,y,t) (2.33a)

Note that V s V=9V « V* = 0. Then let

Yo = 2z , Yy = IP(X,Yat) (2-33b)

so that (for use in (2.32)):

Vo = ez, 2+ Ty2 = (%) (2.33¢)
In rectangular coordinates (x,y,z):

Ty = el o+ gy oL

(2.334)

3 9
VE =Ty x WYy = e 5% - 2 5%

But, by definition, V¥ = eju + eov so that if the flow is two-dimensional, ¥
is the conventional stream function. In cylindrical coordinates (r,8,z) with
unit vectors €0 €g> €3¢

= oY oy N
Wi =e. 37" € 5o
1 3y oy
* = = - -
Y le x sz gr T 30 ge 3 (2-336)
= gr r * geve J
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Also

2+ W =0
(2.33f)
V-V*=eaw and 9 x (V- V*) =0
With equations (2.33), equation (2.32) becomes
2g x V = v[2a(t)y] (2.34)
and (2.28) becomes
=L 2 (% x B) (2.35)
el oo VPy + VW4V + g6 - (2 x R 2.35
where
Py =p + p ¢ - (1/2)2%R? + 2qy] (2.36)

with ¢ and Q time dependent; see reference 1L, p. 177, for ¢ and @
independent of time.

Por the case where the rotational speed is constant (Q 0), equation
(2.35) is analogous to the Boussinesq approximation, with pure natural convec-

tion caused by 'buoyancy" body forces.

The case where the =z component of velocity w(x,y,t) is zero (two-
dimensional flow) is included in case 2, equations (2.33) through (2.36).

Case 3. Rotatiomal symmetryl in cylindrical coordinates—Consider cylin-

drical coordinates (r,8,z), with the unit vector e, = e3 = @/ defining the
z direction and the coordinates r and 6 being in the xy plane (fig. 2.2).
2 Let e, and g5 be unit vectors in the
{ respective directions of increasing r
dya and 6. Assume that the flow is
~ invariant in 6. (This would be true

in the rotating tank only if the axis
of rotation is at the center of the

e tank and only for those ranges of the
f parameters for which such a flow is
.~ stable.)

Let any plane through the axis

P (constant ©) be called the rz plane.
) o . In this case, let V* be the projec-
Egne22:—Cyhmkmdcomdumws tion in the rz plane of the velocity
for rotational symmetry. V at a point in that plane, so that
V = V¥(r,z,t) + eeve(r z,t) (2.37)
1p distinction is made between rotational and axial symmetry (v = Q) fol-

lowing Synge (ref. 15) and reference 16.
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Note that with rotational symmetry

' sz
(rvr) +—5-=0 (2.38)

R

VeV=V-+ V%=

where v, and v, are the respective velocity components in the r and z
directions, and do not depend on 6.

Then let
¥, =6 and Y, = P(r,z,t) (2.39a)
so that, for use in (2.32):
oy
- 1. 2_1
YwZ_ger e_rge 3
£+ Wy =0
—e W Y
VI = eor T S 3y (2.39b)
_ 13y 13y P
% = = _ L L
LASEINAS B ¢ r r 3z> * §z<r ar>
=ev +ev
“r'r | “zw
Q¢ Wy = -Qrv
Q x (V-V#*) = -e Qv Y,
~ ~ o~ “r 0
Therefore, from (2.32), with (2.39b),
20 x ¥ = QQ(vrge - vegr) (2.50)

It is seen from this special case of rotational symmetry that the Coriolis
force 29 x V in equation (2.28) is in general not negligible in three-
dimensional flow, either when & - O with forced convection (2 £ 0 at some time
in the problem) or for steady rotation (@ = 0) with & # 0. Thus, if the flow
is restricted to be two-dimensional, then (see case 2 above) the Coriolis force
can be included in Vp and eliminated in the 1limit as &6 = 0; but if the flow
is three-dimensional, the Coriolis force is not balanced by pressure gradients,
and so cannot in general be eliminated when 6 = O.

Case 4. Rotational symmetry? in spherical coordinates—TFollowing a proce-
dure similar to that in case 3 above, consider spherical coordinates (r,¢,0),
with the unit vector e3 = @/Q defining the axis of symmetry from which the

2See footnote 1.
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z L o polar angle ¢ is measured (fig. 2.3).
dsa ~ The assumption of rotational symmetry
implies the flow is invariant in the
azimuthal coordinate 6, although there
may be a velocity component

Vg =.ve(r,¢,t).

Let en, €¢> and g¢g be the unit
y vectors in the respective directions of
inereasing r, ¢, 6. Let any plane
through the axis (containing gy and
ey> as well as e3) be called the r¢
X plane. Let V* be the projection of
v(r,$,t) at the point (r,$,8) onto the
Figure 2.3.— Spherical coordinates for r¢ plane, so that

rotational symmetry. V = V¥(r,¢,t) + geve(r,¢,t)
(2.41)

Note that

1

Vv =T - v =k ey (n,0,0)] iy 5y

~ ~ ~ r2 3r

(r,¢,t)] =0
(2.42)

[(sin ¢)v¢

where V., and v are the respective velocity components in the r and ¢
directions, and do not depend on 6. Then, for use in (2.32), let

¥p = 8 and Yy = Y(r,¢,t) (2.L43a)
so that
Y S S ~
Yo = (r sin ¢>§6
R ¢« VYo =
= e %+ e %%ﬁ% 5 (2.43b)
- - Y
VE = Vi x Wy = e (r2 sin ¢ 3¢> ~¢<r sin ¢ ar>
=e.V (r,¢ t) + %% (r,¢,t) )
From (2.43b),
- 3 - =1 3
Yr = 72 sin ¢ 96 and Vo T T sin ¢ or
and so (2.43¢c)
Vi = Qr(—v¢r sin ¢) + g¢(vrr sin ¢)
Noting that:
€3 ~ &, = cos ¢
e3 v g,y = cos[(n/2) + ¢] = -sin ¢
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we have
-Q(r sin ¢)(v

Fel
L]

<]

S
b
1

s ©OS o + A sin ¢) (2.434)

Also with

—(e_sin ¢ + e, cos o)

= g6 r

(D
w
X
il

¢

we have

Q x (Vv - v*) = —Qve(gr sin ¢ + e, cos ¢) (2.43e)

¢

With equations (2.43b, d, and e), equation (2.32) gives then

]

(sin ¢)§r - ve(cos dle, + (vr sin ¢ + v, cos ble

¢ 8

(2.hh)

For flow with rotational symmetry, equation (2.4k4) for spherical coordinates is
equivalent to equation (2.40) for cylindrical coordinates. Comments on case 3
also apply here.

Further comments on the proper forms of the equations to use for small §
can be made when the respective forms of the vorticity equation are derived for
the various cases in the next section.

Vorticity Equation and Vorticity-Stream Function Relations

Computation of a flow field with use of vorticity as a primary variable is
advantageous because (see Lighthill, ref. 17, pp. 57-60; and Greenspan, ref. 8,
pp. 20-21):

1. The unknown pressure and all conservative body forces are eliminated
from the problem;

2. Large, sudden changes in velocity or angular velocity of the surface
produce large sudden changes in fluid velocity and large impulsive pressures,
whereas the vorticity distribution varies smoothly. (Vorticity changes are not
propagated at the speed of sound, as are velocity and pressure changes.)

The fluid vorticity w 1is defined by

wzZVxV (2.45)

To obtain the vorticity equation corresponding to each of the momentum-
equation forms (2.28) and (2.35) use first the vector identity

v - v o= v[(1/2)v2] -V x (¥ x V) (2.46)

in the left side of each of those equations, and then take the curl of each
equation. With use of several identities and with g given by (2.12), one
obtains from (2.28):
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-V x (Vxw) - w2y =0 x (-2 xB-22xV + gs) (2.47a)

and from (2.35) for flow independent of* z:

3w

- T x (Y xw) - vy =9x(-gx R+ g) (2.17b)

These forms of the vorticity equation are reduced further as follows: With the
vector identities

Vx(AxB)=B-+«vVA-A-+VYB+A(VY - B) - B(v - A) (2.48)
and

Vew=V -+ (yxV)=o0 (2.19)

and with use of the approximate mass-conservation equation (2.20), the left
sides of equations (2.47) become

w
=V s Vw - s V- W2y === -y oo VY - W02y (2.50a)

(The significance of w * VV is discussed by Batchelor, ref. 1, pp. 267-268.)
It may be noted for later convenience that with use of the following vector
identity for the dyadic AB,

Ve (4B) =4 - VB4 (V- AB

along with (2.48), one can also write the left sides of equations (2.47) in the
"divergence form"

%2-+ Voo (V) -V ¢ (0V) - vy (2.50p)

where, for example, in Cartesian coordinates

Ve (V) = 5y () + 52 (vo) + g ()
7o W) =52 () + 5 (@) + 5 (0,7)

The right side of (2.47a) is reduced further by using the identity

Vx (gs) =6(y xg)+(Vs) xg (2.51)

with equations (2.12), (2.26), and (2.27a) so that
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Vx[-0xR-20xYV+gsl=1(1+6)7x(-gxB-20x7V)+(78) xg

-~ e

(2.52)

If then the quantities V x ( x R) and V¥ x (@ x V) are expanded according to
(2.48), for the case under consideration (constant inertial axis of rotation)

with

Q = eg(t) , VO

mn
o
v
1<
.
0
]
o

o (2.53)
g+ ¥WR=0, V+R= 2
equation (2.L47a) with (2.50a) and (2.52) becomes
Duw .
o -t IV - w2 = (V8) x g+ 2(1 + 8)(g - VW - Q) (2.5L)

where
- 9V = 2(37/3z) and @ = e3f

0

We have now arrived at a point where, for consistency with the previous develop-
ment for small 6, we can neglect ¢ in comparison to unity in the body-force
term. Eqguation (2.54) is then approximated finally by

1.

—= - w s VW~ W2y = (V) x g +2(Q W -
(2.55)

(78) x g + 2(Q3V/32 ~ e30)

In the case where the flow is independent of =z, equation (2.55) is equivalent
to equation (2.47b) reduced to

S~ w UV - w2y = (78) x g - e3(20) (2.56)

In the further specialization to two-dimensional flow (w = 0), the vorticity is

w = ggw (2-57)

so that (2.56) becomes the scalar equation

D .
oo - V2w = [78 x g] - 20 (2.58a)

or, with the left side replaced by (2.50b), in two-dimensional Cartesian
coordinates (x,y),
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dw 9 _9 2 = .08 38 _ o4
% * 5 (uw) + 57 (vw) - w2y = B2y ~ B1 3y 2Q (2.58b)

or in two-dimensional polar coordinates (r,e),
3w, 1f 8 8 2, o o 28 ;_ag) :
5t + r[ér (rv w) + 86 (v w{] - W¢éw = €9 57 ~ gr(r 56) 2Q (2.58¢c)

where .g) and g are the x and y components of g, and g, and gé are the
r and ® components of g in (2.12).

It is noted from the vorticity equation (2.55) that:

1. In the limit as § - O, the nonsteady rotation term in the momentum
equation (2.28) is exhibited only in the term -2Q in the vorticity equation,
whereas the Coriolis term results only in the term 2@ - VV in the vorticity
equation, and both of these are in general not negligible as 8 + O in three~
dimensional flow where 3V/3z # O. '

2. In the limiting case of rigid-body rotation (relative velocity V - O
and & » 0), equation (2.55) reduces correctly to N

3. In the special case of steady rotation (ﬁ = 0 for all time), the only
driving term in (2.55) or (2.56) is the buoyancy-force term (V§) x g

L. In general, the driving factors in (2.55) are both the buoyancy term
(VG) X g and -20, these being the only terms that are independent of, or con-
tain terms 1ndependent of, the relative velocity V. Thus, if both
(V8) x g = 0 and Q = 0, we have V =+ O so that a rigid-body rotation (condition
of no convection) is approached The Coriolis term 2@ « VV in the three-
dimensional equation plays an essentially passive role, that is, it apparently
acts simply to absorb (oppose) part of the effect of the driving terms (see
Ostrach, ref. T), since it contains V and vanishes as the flow approaches a
rigid-body rotation when both (Vé) x g and Q are zero.

In connection with the use of the vorticity equation (2.55) or (2.56) it
is convenlent to use the stream functions for the special cases noted in the
previous section, and to relate the stream function to the appropriate
vorticity component.

In case 2 above, with no flow changes in the 2z direction, w, defined by
(2.45), becomes

w=V x [egwlx,y,t)] + ¥ x {V x [e3¥(x,y,t)]} (2.59)
From the vector identity
V< (7 x4)=v(7 -4 -v2a (2.60)
one has
v x [7 x (e3v)] = -e3v?y (2.61)
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so that in rectangular Carteslan coordinates,

oW

o (2.62)

W
w=e1 5o e uo - €3V

In the case of cylindrical coordinates (r,8,z) with flow independent of 1z,

= e (3% _ o 3 _ 2
= gr(r 36) €6 7r ~ S3VV (2.63a)
where

2. 1I o [ v\, 2%

V¥ = 22T o (r 8r> MY (2.63p)

For two-dimensional flow, with (2.57) for w = 0, (2.62) and (2.63) reduce to
w = -VZy (2.6L)

In case 3 above, with rotational symmetry in cylindrical coordinates,

V= grvr(r,z,t) + geve(r,z,t) + ggvz(r,z,t) (2.65)
w=YxV=co +euw +e3n (2.66a)
where
ave
0, = - 5= (2.66Db)
sz Bvr
we = - —5-1—‘- - ™ (2-66C)
- 1.9
W, =T (rve) (2.664)
With
- _ 13y - 13y
Ve T T T3 WV T o (2.67)
from (2.39b), equation (2.66c) becomes
o 21w, 22
e T T 3 (r 8r> T 2
(2.68)
- 3211 _ lay)_*- 321!

Note that in this case, w is not directly related to VZ2y, since

8
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72y

1l
R =
o
—_

H
4
~——

+
E
[y

(2.69)

Equation (2.68) would be useful in conjunction with solving (2.55) for this
special case.

In case 4 above, with rotational symmetry in spherical coordinates

V= grvr(r,¢,t) + §¢v¢( »hot) + e oVe (ry¢,t) (2.70)
where YT ey T g T Sg (2.712)
-1 9 :
L. = TSin s 36 [(sin ¢)ve] (2.71b)
w, = = (rv,) (2.71c)
¢ r ar 6 :
-1 Bv
Wy = 8¢ - 5;-(rv¢ﬂ (2.714)
With
-1 3y - -l 9y
Yy T 72 sin ¢ 99 and V¢ T T sin ¢ or (2.72)
from (2.43c), equation (2.71d) becomes
3(ai o2 220, gy 31 3
~rilsin ¢Jug = % gy + (sin ¢) 5y [;in 3 a%] =

Note again that w is not directly related to Vzw, which is given by

r2y2y = S?'( 2 5%) = ¢ 5 [}51n ) ] (2.7h)

Equation (2.73) would be useful in conjunction with solving (2.55) for this
speclal case.
Energy Equation
The energy-conservation equation is considered in two forms, (2.3a) and

(2.3b). With the caloric equations simplified to the forms of (2.17) with
V + V assumed to be zero (eq. (2.20)) in expressing the viscous stress tensor
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1 in (2.6) for use in (2.T) so that
¢ = [yv+ (W), ] %W (2.75)

and with k in (2.8) assumed to be nearly constant as noted above, the energy
equations (2.3) take the forms

DT - )
pe, Hr + PY * V = KVAT + 1o (2.76a)
and
DT Dp _ 2

For the conditions under consideration in this problem, we have retained the
term pV ~V in (2.76a) for reasons given below.

If there is any apparent conflict in the results from either of the two
forms of the energy equation, one should use the form that is most consistent
with (2.16), rather than with the more restrictive eguation (2.20), which
results from letting & - 0. Obviously, for a liquid in which ¢y = ¢y and
p = constant, there is no difference in the two equations (with Bp/Dt very
small). But in the present problem, there is a significant difference between
Cp and cy, so we must consider the relative consistency of ¢ither neglecting
pV « V in (2.76a) or neglecting Dp/Dt in (2.76b).

Consider first equation (2.76a). One could use (2.76a) with (2.20) sub-
stituted if, in fact,

lpy ~ V| << |wv2r|
To determine whether pV ~ V 1is negligible, write (2.1) as

.v=_PRDpo
pY -V > Dt

and use the approximation from equation (2.16) that

1D ___ -8 DL DT
o Dt 1 -8 AT Dt ~ Dt
so that
DT
pY - V= pB ¢ (2.77)

Near the critical point of a fluid, for example oxygen with T = 150° XK and
B ~ 0.01/°K, one finds, for example, from the van der Waals equation of state,

that

% > (RT) = o(ch) (2.78)

perfect gas
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Therefore, from equations (2.77) and (2.78),

DT DT
or
DT
o7 - V| 2 [pe, TF (2.79)

The result (2.79) indicates that pV « V would not be negligible in determin-
ing DT/Dt from (2.76a).

Consider then the use of equation (2.76b), with use of the approximate
form of the equation of state (2.16), where B (eq. (2.1ka)) is to be deter-
mined from a functional relationship such as

p = p(p,T) (2.80)
Because of (2.80), we can write
Dp _ (%) Do , {3p) DT
Dt = \3p ) Dt - (BT , Dt (2.81)

With the approximation represented by egquation (2.16)
Do _ _ g DL
Dt - Pof Dt (2.82)

and from the definition of g in (2.1ka),
; =[:i(§p_>] . _1<Ap_\
p \OT/_], o aT)p

3 DT .
(—P>p} (2.83a)

equation (2.81) becomes

Dp _ é2> 29) N
Dt 90 T T Dt

T P
But for a state function such as (2.80), a fundamental identity from calculus
states that the bracketed quantity in equation (2.83a) is identically zero.
Therefore

Dp
ot * 0 (2.83b)

This result shows in a rational way that use of the approximate state relation
(2.16) is most compatible with the approximate energy equation (2.76b) in the
form (as & - 0 in (2.18a)):
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Dt p cC

bT K \g2p 4 E%)Q (2.8h)
op D

(See also ref. 10, pp. 126, 127.) With use of (2.20), the left side of (2.8L)
may also be written as

DT 9T

= =24y . (vT) (2.85a)

Dt~ 3t

where in the special case of two-dimensional flow,

v (yn) = 52 (ur) + 3_?; (vT) (2.85b)
=22 (rv 1) 4 %% (v,T) (2.85¢)

PROBLEM DEFINITION AND APPROXTIMATE FLOW EQUATIONS
FOR TWO-DIMENSIONAL SQUARE TANK

In this section, the theory developed above is summarized and specialized
for computation of the convection caused by time-dependent rotation and density
variations due to temperature variations in a two-dimensional square tank. The
configuration is as shown in figure 2.4. The x,y coordinate system is fixed
relative to the tank, with the origin at the corner as shown. The rotation is
about a point a distance R, from the tank center, and the radius vector from
that point is denocted by R (see fig. 2.1) with components in the x and y

directions equal to .
Ry = x ~ %‘2
(2.86)
Ry =y -~ l—l + R R
2 2 e ~
|
l
The time-dependent angular velocity & y !
is positive when counterclockwise. In |
the x,y coordinates the effective body i
force per unit mass, given by equation 0 X t
(2.12), becomes {
Re 1Rz
l
g = e181 + €282 (2.87a) :
where :
= 2 . !
g1 = Rlﬂ + 20v + RzQ - a) o I
(2.87b) - \?
g, = RyQ2 - 20u - Ry - ay R
(2.87¢) Figure 2.4.— Square tank configuration.
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and where aj; and as are prescribed x and y components of a (defined follow-
ing equation (2.9) and u and v are the x and y components of V (egs.
(2.33)).

With 6 given by equation (2.18b), the vorticity equation (2.58b) becomes

) 3 3 92w . 52 3T aT .
5%-+ 3y (uw) + 5;'(Vw) = v(ax2 + 555%'- g28 37 * 818 3~ 2h (2.88)

The energy equation (2.84) with (2.85) becomes

9T d 3 __k [3%r azﬁ
3t © ax (ut) + 3y (v1) = pocP <3x2 + 3y2/ P (2.89a)

where the dissipation function, from (2.75) becomes

5 3 av _ du|?
[(a;;) A2 (2 2 (2.890)

It is convenient to use the vorticity-stream function relation from equation

(2.64):

_ﬂ‘l ___Iui = _ 90
3%2 v 2 0 (2- )
wvhere from (2.33(3.),
= ﬂ = _3_}2_ 9[
u = 3 ) v 3 (2. )

Sufficient initial and boundary conditions are needed to specify the prob-
lem completely. Initially (t = 0), a temperature distribution is specified and
the velocities u and v are everywhere zero (rigid-body rotation). At all
times,

on X

U}
o
v
=

I

2

/f u=v=0 or 9 0 (2.92)
')

y=0, ¥

The condition in (2.92) on the normal component of velocity (tangential deriva-
tive of V) can be replaced by ¢ = O on the boundary for application.to equa-
tion (2.90). The condition on the tangential component of velocity (normal
derivative of V) can then be incorporated into a condition on w at each
boundary for equation (2.88). The temperature or its normal derivative may be
specified on the boundary at all times for equation (2.89a).

The function Q(t) must be prescribed as a condition of the problem. As

one example, for sudden reversal of rotation (with @ = ~-Q, for t < 0), one may
use an approximation of
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Qlt) = o+ 2QOS(t) (2.93a)
where 2 is a constant and S(t) is the unit step function,

s(t) =0, 1t <0

i}

(2.93b)

Then from (2.93a),

Q(t) = 2a_§(+) (2.93c)

where é(t) ig the Dirac delta function. The simplest numerical approximations
to 8(t) and S(t) may be used; for example (with t) very small),

s(t) =0 for t < O
=t/t; for 0t <ty (2.9ha)
=1 for t 2> %,

S(t) = 0 for t <0
= 1/t7 for 0 <t <1, (2.9hp)
=0 for t 2 %,

For convenience in further treatment, equations (2.86) through (2.94%) may
be put into dimensionless form using the following dimensionless variables and
parameters (where L is an arbitrary length):

3 =X . Mt )
E—L: n—L’ T-Lz
2 T - T
x _ WD - o ¥
wrETy e i TR - T 7 ¥=3
o]
U = uls X v = vL
v v
29
20(t) 0
* - ¥ =
pf(r) = S35, 9F = > (2.952)
2 2
G = Gr(gl/QOL) , G = Gr(gz/QoL)
* 2 ¥ 2
aj] = al/QOL , a, = aZ/QOL
% = bry2
o (L*/v%)e J

with
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Reynolds number

Prandtl number

Grashof number

Eckert number

QOL2
Re =
v
p_ve-
=O
Pr A ;
2 -
(QOL)L B(TR To)
Gr =
v2
(@ 1.)2
Be = T g T )
p R o

} (2.95b)

~

Equations (2.86) through (2.9%4) become, in dimensionless form (dropping the

asterisks from w¥*, Q¥%, 0%, af, and a: from here on):
dw 3 d _ 0% . 3% 3H dH  an
. " 5t (Uw) + T (Vo 522 T anz -~ 2 3¢ * Gl 37~ & (2.96)
:li ) (") + —3-(VH) - L (2% + 82H> + 2L (2.97)
9t  3E on Pr \ 382 n2 Re?2 :
32y . 32y
3E2 an2 w (2.98)
Y oy
U=5y> ¥ 3 (2.99)
where
G -ﬂ-(g-;&-l92+ﬂv+ -l-g’—+li‘5- L3888 6ra, (2.100a)
1 = Rez 2L) L 2L L) 2 ar 1 e
_ Gr 12, Rl 12)1ae
Gy = Rez[]; - 55+ L) T 0% - U - (g -3 L> 5 T] - 6r a, (2.100b)
2 2 2
U 3V [3v . au
d =2 {—=) +|— + = .
(3« ()] (52 (2300
with conditions
£ =0 and €=.Q,/L ‘gi=£=‘i’=0 (2.102)
n=0 and n = /L n

The value of H or its normal derivative may be specified on the boundary.
The dimensionless function Q(t) may be specified, for example, by equations

(2.93) and (2.9%) with +t and t; replaced by T and 3.
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CONCLUDING REMARKS

A set of general approximate eguations has been developed that represents
the Navier-Stokes description of convection of a thermally stratified fluid in
a container with arbitrary time-dependent rotation. The equations are valid
for combined forced and natural convection with significant., but sufficiently
small, density and temperature gradients. All relevant terms representing
effects of rotation and changes in rotation are included.

The special case of convection in a two-dimensional square container was
formulated for subsequent computations.
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3.

COMPUTATIONAL METHOD FOR CALCULATING

CONVECTION IN A ROTATING TANK
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SUMMARY

A time-dependent finite-difference method is presented for calculating the
convection of vorticity and energy in a stratified, supercritical cryogenic
fluid contained within a two-dimensional square tank rotating in a gravitation-
less field. The finite-difference approximations to the convective part. of the
governing small-density-variation form of the Navier-Stokes equations are based
on an explicit predictor-corrector scheme of second-order accuracy in time and
space. A discussion of the stability and accuracy of this method is included.
The solution for the stream function that appears in the governing equation is
determined by using a direct solution of Poisson's equation based on double
cyelie reduction.

INTRODUCTTON

In this chapter, a numerical finite-differencing scheme is described that
can be used to compute the convection of vorticity and energy within a two-
dimensional square tank rotating in a gravitationless field.

The purpose of the analysis is to determine whether local temperature
stratifications in an insulated oxygen tank traveling in space at high pressure
could be broken up, or stirred, by very low rates of rotation and by rotation
reversals. Effects of both viscosity and heat conduction are included in the
study of the time-dependent mixing. The mathematical model that describes the
two-dimensional behavior of such an environment is given by the Navier-Stokes
equations for small-density variations, one form of which is given in the next
section. Many numerical calculations of these equations have been carried out
but not with the physical conditions described above. These physical condi-
tions guided the choice of the numerical procedure. In particular, a method
was chosen that has very little numerical dissipation but is not highly accu-
rate with regard to dispersion, since the amount but not the details of the
mixing was considered to be of paramount importance.

PROCEDURE

The geometry of the problem is shown in figure 3.1. A two-dimensional
fluid within a square is being rotated at a rate Q about some point exterior

y IO — KM &+ #eea x4 to the boundaries of the square.
b— 11— KH+ OO O O + Since we are presenting only the
T_ + 00 OO0 =+ basic principles of the numerical
2 5 i 66 060 4 process, the details of deriving the
! l’ 2 s 00 0.0 + particular form of the Navier-Stokes
X O | + + s o+ s equation given next are omitted. The
;;{Rc 7 Wit o203 JH UM governing equations derived in chap-
| ter 2 are
€:=0 £:10
ow 2 9
(a) Geometry {b) Finite difference grid E‘ + 'a—g (U(-U) + ‘ﬁ' (V(D)
32w 32w JoH oH asn
Figure 3.1.— Geometry and differencing grid for = %e2 t oz - G2 9L + G1 3n ~ at
two-dimensional square tank. (3.1a)
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B 2 (ym) + 2 (va) = -k (32H + "ZH) (3.10)

T ?E an = Pr 982 an2
22y . 3%y
-5E5-+ 5;7 = - (3.1c)
_ oY = _ oY
U= an ] V= ag (3-16.)

The independent variables Tt and (g,n) are dimensionless forms representing
time and Cartesian (x,y) space, respectively; w, H, and ¥ are the dependent
variables representing dimensionless forms of the vorticity, temperature, and
stream function, respectively. The variables G; and Gp represent the apparent
body forces in the rotating system as defined in chapter 2 and Pr 1is the
Prandtl number. Equations (3.1a), (3.1b), and (3.1lc) are referred to as the
vorticity, energy, and Poisson equations, respectively. Note that the vortic-
ity and energy equations (later referred to as the transport equations) are
written in conservative form.

The finite-difference computational domain is shown in figure 3.1(b). The
crosses represent the boundary points corresponding to the walls of the con-
tainer, and the open points refer to the interior points at which the dependent
variables can change values. Any grid point at which a dependent variable can
change in time is referred to here as a moving point for that dependent vari-
able. This simplifies the description of the matrix formulations used in the
analysis of the numerical methods. The value of any dependent variable, say
w, at a grid point is defined as

n

Wy g = w(Ej,nk,Tn)
where
g5 = (3-1)a8 3 =1,2, . . ., dM
n, = (k=1)an k =1,2, . . ., KM
T, =1 At n=20,1,

Referring to figure 3.1(b), we see that this definition puts £ = 0 along the
left edge and n = 0 along the bottom of the grid, and restricts the number of
moving points to 2 £ J < JH; 2 £ k < KH.

The transport equations and the equation for the stream function are quite
different in character. Both the vorticity and energy equations are parabolic,
time-dependent partial differential equations; whereas the Poisson equation for
the stream function is elliptic and explicitly independent of time. This leads
to the following generally accepted computational pattern. Given the values of
all dependent variables over the mesh at the beginning of a time interval:
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1. Advance the vorticity and energy one time increment (either implicitly
or explicitly).

2. Using the newly evaluated vorticity, compute the stream function by
solving the Poisson equation.

3. For increased accuracy, cycle step one and two in a conventional
predictor-corrector process.

VORTICITY AND ENERGY EQUATIONS

Finite-Difference Scheme

The finite-difference approximations to the transport equations are based
on the predictor-corrector scheme developed by MacCormack (ref. 1). The dif-
ference formulations are in conservative form and are accurate to second order
in both space and time, having an error proportional to a third space deriva-
tive in dispersion and a fourth space derivative in dissipation (see ref. 2).

Predictor for the vorticity:

n AT n n AT n n
. - _ AT - _ 2L - (v
T T e T g L0 gen e (U)y b= g TRy ey = (el
AT n n n AT n n n
07 Wiee T 2T ) Y Tamz Bk T 20k T 0 k)
G2 AT n n Gl AT n
T2 4L ( 31k Hj—l,k) 2 An (Hj,k+1 - H?,k—l) - A4 (3.22)

Predictor for the energy:

~ n AT n n AT n n
By ™ M m ae [y = (5 0] = 5 TV ey - (VD
1 At n n n 1 AT n n
—_ - + = - +
* By (aE)Z e x ~ By Y H Ly ) YRy (am)z s jer 28y H?,k—l)
(3.2b)

Corrector for the vorticity:

n+1 1 n AT =~ ~ AT =~ =~
w, . == w, .+, - [(Ua), , - (Us), 1 = = [(Vv® - (Vi

J sk 2 {J,k J sk AE [ )J WK ( )J—l,k An [ (Va) WK >j Jk~1

AT - - - AT - - ~
+ - + + - +
Gz 51 ™ 2% * O 0d * Tz 18 e = B8y 5 * By )

G, At @ - , 01 bt 5 5
T 2 AF ‘Ty+l,k T T3-1.,k 2 An O §L,k+1 T i L,k-1
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Corrector for the energy:

AT o, ~m
! - Z%-[(VH). - (vH) ]

ok 273k J.k 3.k J k-1

n+1 1 n -~ AT e ~
H ==<(H + H - — [ (UH). - (UH).
{ AE [( )J sk ( A )J_lak

. At = ~ At = -~ -
+ H - 2H + + -
Pr(AE)2 ( j+l,k 2 j.k Hj—l,k) Pr(an)2 (Hj,k+1 2Hj,k * Hj,k—l%}

(3.24)

In these expressions the convective terms are differenced forward and backward
in space for the predictor and corrector equations, respectively. In practice,
however, this procedure is programmed to be cyclic so that all four possible
combinations of forward-backward differencing are used in four successive time
steps. In the intermediate step U and V are obtained via the solution of the
Poisson equation for V¥ from &. Similarly, in the final step UYL ang vt

are obtained by the solution of the Poisson equation for yn+l from witl,
Notice that the diffusion terms are central differenced in both the predictor
and corrector. The term AQ in equations (3.2a) and (3.2¢c) is evaluated
according to AQ = (dQ/dt)AT where dQ/dt is a specified time-dependent

function.

Stability

The stability of a general set of nonlinear difference equations is
usually estimated by studying the stability of an "equivalent" set of linear
difference equations. We accept this philosophy and point out further that not
only can the stability of the linear difference equations be established but
their complete analytic solution can be determined in a straightforward manner.

Consider, for example, the simple one-dimensional diffusion equation

3 _ . 3%
3t " 9E2 (3.3)
A well-known difference version is
n+1 n AT n n n
= — -2 + .
4 $5 v wTaeyz (bypy - 2e5 4y ) (3.1)

which can be expressed in vector, matrix notation by

=Bg +f (3.5a)

g)n+1
or

(BT - B)g, = f (3.5b)

Ll




where E 1is the displacement operator, and f contains the boundary condi-
tions. Note that when there is no space index, the time index is written as a
subscript rather than a superscript. This is done in this section to clarify
exponentiation. If £ is a vector of constants! the solution of equation
(3.5) can be written (I being the unitary matrix)

b, = L ey(05)7 + [T - 817 (3.6)
J

The ¢. are constants determined by the initial conditions, and A. are the
values of the scalar E, which are the assumed distinct roots of the character-
istic polynomial equation

P(E) = det(EI - B) = 0 (3.7)

The matrix B and the vector £ in equation (3.5) depend on the choice
of differencing scheme and the boundary conditions. If they represent equation
(3.4) with boundary conditions given at the two ends & = 0 and £ = 1, they
become

[{os]
fl

T(B, 1 - 28, B)
k (3.8)

ey
i

(B¢1> 0: v e e 0: B¢JM

where B8 = pAt/AE? and T 1is a square tridiagonal matrix defined by

4 d; O ... 0 0]
a1 do d;
0 -1  dg
T(d-1,dp,d47) = |. ... (3.9)
do dy
. . . d..—l do

The eigenvalues of T(d-1,dq,d1) are

.

A = dp + 2/d1d- cos ﬁ%% , §=1, ..., M (3.10)

where M is the number of moving points. DNotice that if B is independent of
E, the roots of det(EI - B) = O coincide with the eigenvalues of B. Using

lThat is, if the boundary conditions are independent of 1. When such is
not the case the particular solution is more complicated, but can be found (see
refs. 3 and b4).
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2 fixed pdins 1, JM the normalized mesh spacing shown in sketch (a), we
JH-t moving points 2 <j < JH . o - .
can find the eigenvalues of B in equation (3.8);
and using equation (3.6), we can write the analytic

|
_ﬁAfr_' 867 3n solution to equation (3.4) as
j=1 2 3 JH JM JH-1
! ] ¢ = ) c,[1-28+28 cos(jn/TH) 1™ + [T - B]"1¢
£=0 &l “n j=1 ~dJ . ) )
(3.11a)
Sketch (a)

under the imposed boundary conditions. Equation
(3.11a) has the alternative expression

?n = jzl gj - T aep sin 5 I -BI™f 3.11b

Clearly, as n 1increases the solution of a set of linear difference equa-
tions can grow unboundedly if the absolute value of any A, in equation (3.6)
is greater than one. Two remarks should now be considered. First, it is pos-
sible in an analytic construction to set to zero all the elements in the vector
3 multiplying a given Xj. The magnitude of such Ais: could be greater than
one and a bounded solution would result as n =+ «. This behavior is basically
related to a saddlepoint problem {(ref. 5). Second, it is possible that all of
the |A-| are less than one but they have a structure such that a computed
solution will appear to be growing in an unbounded manner as the first several
time steps are calculated. This behavior is discussed in reference 6, p. 152.
Nevertheless, equations such as equation (3.11) are the exact solutions of the
linear difference approximations and they tell us precisely (except for round-
off error) what a computer would calculate after any number of time steps.

The stability of difference equations is generally not (for an exception
see ref. T, p. 222) viewed in the above light. More often an amplification
factor is developed along lines similar to those introduced by Von Neumann, as
discussed in reference 8. Thus the term

ik, £ ik n
$(1,6,n) = 3(x)e S (3.12)

is introduced into the difference equation and the ratio X = ¢(t + AT)/%(1) is
determined. This ratio is referred to as the amplification factor and the
values k, and k, are called the wave numbers. The condition for stability
is, of course, that |A| < 1. Applying this technique to equation (3.4), one

finds ik AE ~ik, AZ
A =1+ g(e E _o4se & )

or (3.13)
A 1 - 28 + 2B cos kE AE

This appears to be the same as the term inside the parenthesis in equation
(3.11a), but it is not because the arguments of the cosine terms are different.
We can make the two approaches identical, however, if we reexamine the discus-
sion under equation (3.7).
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The solution given by equation (3.11) depended on the nature of the matrix
B, which in turn depended on the boundarv conditions. Suppose, instead of fix-
ing the conditions at £ = 0 and £ = 1,"we require that the solution be peri-
odic. In such a case equation (3.8) would become

B=T1,(8,1-28,8)
7 (3.1k4)
f=(0,0,...,0,0)
where Tp is a square "periodic-tridiagonal" matrix defined by
— —
dg dq 0 0 d_1
-1 dy a4 0 0
0 d- a 0 0
Tp(d_l_,do,dl) = 1 %0 (3.15)
0 0 do a4
dj 0 0 d-1 dg
the eigenvalues of which are
Ay = dp (d_; + d;)cos 2"(M‘1) + i(d-, - d;)sin 2“('M‘l) 3=1,2, .. ., M
(3.16)

Using equations (3.14) and (3.16), we see that the exact analytic solution to
equation (3.L4) is

JH-1 on(d - l)>]n
¢, = jzl gj[% - 28 + 2B cos —_3%_:_I_ (3.17a)

when the boundary conditions are periodic. This has the alternative form

g4 by A n
by = 1 gj[l - “pgz o sin?(r(y - l)Aaﬂ (3.170)
=1

®=¢“1}Pammcbwmaw where Af = 1/(JH-1) for a periodic mesh (see
b2 b um conditions sketch (b)). The term in the brackets in equation
(3.17) corresponds to equation (3.13).

|
ﬂ“l‘f 885 TRn
. The analytic solutions to linear difference
Vo2 3 sn g €quations with periodic boundary conditions are
4 } especially easy to find because the eigenvalues in
€0 €=1 their B matrix can be readily determined. In
Sketch (b) fact, the simplest way to find these eigenvalues is

b7



often by the separation of variables technique employed in the discussion of
equation (3.12). Consider, for example, the model equation that couples con-
vection and diffusion

2
%%'= -c %%—+ u §E§- (3.18)

The finite-difference approximation equivalent to the one used on equation
(3.1) to form equation (3.2) gives

< n n n n n n

by = by - aldyy - o)+ Bla, - 205 + 65 ) (3.19a)
n+1 l_ ~ - - - . -
4 =3 [¢j * 6y - u(¢j - ¢J_1) + e(q»J.+1 - 26, + ¢j—1)] (3.19b)

where o = ¢ AT/AE, often referred to as the Courant number. Substituting the
predictor equation (3.19a) into the corrector equation (3.19b) gives

ntl _ n 1 n n a? n n n
o5 =4y - golosy - oy )+ ( 5+ 3><¢j+1 - 245+ 45 )
of  n n n n
- 2 <¢j+2 - 2¢j+1 + 2¢j_1 - ¢j—2)
g% ,.n n. n n n

The B matrix for this difference equation with periodic boundary conditions
is the "periodic-pentadiagonal' matrix

—
dg dx dp 0 0 0 dop A7)
d_, dp d, do 0 0 d_»
d, d; dg 47 4ay 0 0 0
Ep(d—2sd—lsd0:dl:d2) =
0 0 dg d; dp
do 0 0 d_; dg d
|4 do d_p d_g do_
(3.21a)
where
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d_p = aB/2 + p2/2 R

a_; = a/2 + a2/2 + B - aB - 282

dg = 1 - a2 - 28 + 32 ? (3.21b)
d = -a/2+a%/2+ B+ aB - 282

dp = - aB/2 + 82/2 D

and 1ts exact analytic solution is

JH-1 "
9, = le gj(xj) (3.22a)
where
2
Aj =1+ (a? + 28){}05[%£§%5%%} - %} + QBZ{EOS[%Eéﬁf%;J - %}
—i{}a - 2a8)sin{%£§%5%;] + af sin{%ﬂéﬁf%%l} , Jj=1, . . ., JH-1
(3.22b)

these being the eigenvalues of equation (3.21a) with elements defined by equa~
tion (3.21b). Although these eigenvalues are complex, each complex Xj has a
conjugate so the summation (3.22a) results in real numbers.

It can be shown that |A:| has extrema at j =1 and at j = 1 + (JH-1)/2.
Notice that |A1| = 1 for all o and B. Designate the value of Aj at
j =1+ (JH-1)/2 by A,, and one can write

I ] = [1 - 202 + Lp(2p - 1) (3.23)

The stability boundary is formed by finding the values of a and 8 for which
IACI < 1. This boundary is formed by two lines: one, where A, < 1, which
results in

28(28 - 1) - a2 < O (3.24)

and the other, where X, > -1, which results in

o]

a2 + 28(1 - 28) <1 (3.25)

The ao,8 combinations that produce stability for equation (3.19) with
periodic boundary conditions are shown in figure 3.2. The rectangle for which
0 s |a] s ¥3/2 and 0 s B < 1/2 represents the practical stability boundary.
Note that B = p AT/AF,2 is taken to be positive since only positive diffusion,
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2= 1-2 B(1-28)

Unstable

a?=28(28-1)
Unstable
-5 _1 | [ [ _ i
o] 2 4 3] 8 1.0

Figure 3.2.— Stability boundaries for equations (3.19)
with periodic boundary conditions.

viscosity, or thermal conductivity
coefficients are considered. On the
other hand a = ¢ At/Af can be posi-
tive or negative depending on the
direction of the wave velocity. Note
that the effect of coupling diffusion
to convection is to lower the maximum
generally allowable value of the
Courant number from 1 to 0.866. It
follows from the above that the stabil-
ity of the method represented by equa-
tion (3.19) when applied to periodic
boundary conditions requires that At
be chosen so that

2
both AE7 and

o (3.26)

Y3 AL
AT < —2__|_

|e

In the more important two-dimensional case the concepts described above

remain the same but the algebra becomes more involved.

The partial differen-

tial equation coupling diffusion and convection for two-dimensional flow is

2 2
39 _ 539 _ 3¢, (39,239
where U, V, and 1 are constants if the equation is to be linear. If the

predictor-corrector sequence, defined for one-dimensicnal flow by equation
(3.2), is applied to equation (3.27), and periodic boundary conditions are

imposed, detailed calculations show that the stability boundaries for
equations (3.24) and (3.25) except that

are the same as those given by

A
o = IUI Z%

1 1
= U AT{AEZ + Aﬂzj

equations with periodic boundary conditions are

™
1

This means that the difference
stable if

_1(_8g2 an?_
ATt £ both 5u <A£2 e

el

AT
+ |v] =
An (3.28)

AE An

/g .
and —§<!UIAT} + IVIA£> (3.29)

In the application to physical problems the effectiveness of the
predictor-corrector method, described by equation (3.19) for the linear and
equation (3.2) for the nonlinear cases, respectively, depends on the relative
magnitudes of the diffusion coefficients (i.e., the viscosity and thermal con-

ductivity) and some representative or average value of the velocities.

there is a high degree of diffusion (u

Ir
large) then the first term in equation

(3.29) would be the smallest and the time step size would be forced, by reasons

of stability, to be unnecessarily small for a given accuracy.
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implicit differencing of the diffusion terms is suggested (refs. 9, 10). If,
on the other hand, the diffusion is low relative to the magnitude of the (ave-
rage) velocity, the physical requirements associated with the domain of depen-
dence limit the size of the time step, and the explicit method described is
entirely adequate. .

In the particular case regarding the convective mixing of oxygen at high
pressure and low temperature, both the viscosity and the thermal conductivity
are so low (ch. 6) that the explicit method is entirely satisfactory from the
viewpoint of stability.

Accuracy

The accuracy of the differencing scheme given by equation (3.19) can be
estimated in several ways. By accuracy we mean, of course, how well it repre-
sents the basic partial differential equation (3.18). We choose here to dis-
cuss this accuracy by deriving the "modified partial differential" equation,
that is, the differential equation actually represented by the difference equa-
tion (see ref. 2) and comparing this to the basic partial differential equa-
tion. One can derive the modified partial differential equation for equation
(3.19) by expanding each term in a Taylor series about the point represented by
(n,j). Time derivatives of higher than first order are eliminated by repeti-
tive use of equation (3.20) itself. The result of such a procedure gives

bp = —cop + ub, - gl(28)2 - c2(a1)2]4,,,

|
_{C—Z8AT[(A£)2 - <2502 - )2 - 6200 Dy v - - (3.30)

The coefficient of the third derivative represents, to the lowest order, the
dispersion or phase error, and the coefficient of the fourth derivative repre-
sents, again to the lowest order, the dissipation or diffusion error.

Note that the error in dispersion is due only to the finite differencing
of the convection term (given by the coefficient of ¢ in eq. (3.18)) and is
of order (A£)?, (Ar)2. The error in dissipation or diffusion is caused by the
finite differencing of both the convection and diffusion terms, orders being
(at)(ag)2, (at)3, ana (Ag)2, (A7)?, respectively. When the magnitudes of the
viscosity and thermal conductivity coefficients are small, as they are in our
intended physical application, the principal error is in dispersion and is pro-
portional to (c/6)[(Ag)2 - c2(At)2]. 1In the practical problem, ¢ represents
a local velocity and the magnitude of the velocity varies throughout the tank.
One can show that the term (c¢/6)[(A£)2 - c2(AT)2] is zero when c¢ AT/AE is
either zero or one, and a maximum in that interval when c¢ AT/AE = 1//§l Since
|e AT/AEImax <1 for stability, the maximum error in dispersion given by the
lowest order error term in the modified partial differential equation (3.30) is
(e A£2/9)¢EEE if numerical stability is the only bound on the time step size.
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To get less dispersive error with the differencing scheme given in equation
(3.19) one must choose a time step such that c AT/AE < 1/¥3.

POISSON EQUATION

The finite-difference approximation to the Poisson equation (3.1c) for the
stream function may be written with second-order accuracy by the well-known
five-point formula as

- + - +
BT S TE S 1N S O U0 Sl IV S ES TR S (3.31)
(an)? (ag)2 Jk '
j =2, . . .,dM1, k=2,...,Kel

Given a (JM-2) x (KM-2) internal distribution of vorticity and 2(JM + KM - 2)
boundary values for the stream function as shown in figure 3.1(b), we wish to
find the (JM-2) x (KM-2) interior values of V¥ +that satisfy equation (3.31).
We can find such a solution by iterative techniques such as SOR and ADI (ref.
11), but since the equation is linear we can also solve it by direct inversion
of a set of linear, simultaneous algebraic equations. These so-called direct
methods require far less computing time than the iterative ones when used to
find solutions to equation (3.31). The particular one used here was developed
by Buneman (pef. 12) and is referred to as the double cyclic reduction method.
It is an extension of the odd/even reduction scheme (refs. 13, 14).

0dd/Even Reduction of a Tridiagonal Matrix

Consider the tridiagonal set of algebraic equations

r"'j r_"!

j
©y

a -1 0 0 0 0 Uy i)
-1 a -1 0 0 0 0]{us f3
o -1 a -1 0 01| uy i
0 0 -1 a -1 0 Of|lug|=|%s (3.32)
0 0 o -1 a -1 Ol}ug fe
0 0 0 -1 a -1ll{us Ty
L_-O 0] 0 0 0 -1 a||ug fg

Multiplying the odd rows by a and adding the adjacent rows to it gives

a2-2 -1 0 || us afy + £, + Ty
-1 a2-2 -1 ug| = |afg + £, + f¢g (3.33)
0 -1 a2-2 uy afy + fg + fg

52



which is obviously recursive if the number of rows equals 2L—l where L is an
integer. If we set

a(l) =a , a(£+1) = [a('q')]2 -2 (3.3Lka)
£ g pler) () pe) () () (3.3kb)
n n n n -1 -1
n-2 n+2
and let M represent the midpoint in the u vector (M =1 + 2L_1), we have
after L-1 recursions
a(L)uM = f&L) (3.35)

This is solved for Uy and a backward recursion gives the completed solution.

One of the advantages of this scheme is the efficient use of core storage.
Only one array is needed in the calculation, it is initially filled with the
elements of f, which are then overwritten and replaced by the values of u in
the solution. Table 3.1 shows how an array2 of 17 is overwritten by the for-
ward recursion, at the end of which every other value of f has been overwrit-
ten. Table 3.2 shows the backward recursion. The final value of ug 1is
computed by equation (3.35), then us and ujs are found, and so on, until all
the u from 2 to 16 are evaluated and have replaced the original f5,
f16'

*

The same concept can be applied to find the direct solution of the two-
dimensional equation (3.31). When equation (3.31) is multiplied by (A£)2 and
written in matrix form, we obtain

— BDEE ~ ~
A -I ¥s fo h
-IA - 0 ¥3 f3
-T A -I
= (3.36)
0
-T A -I
- £
T A Lom-1
. — - -

where A is a (KM-2) x (KM-2) tridiagonal matrix with ~2[1 + (A£/An)2] on the
diagonal and (A&/An)? on each side; I is the (KM-2) x (KM-2) identity matrix;
Y. 1is the vector of stream functions in the jth column of the grid; and f
is the Jjth column of vorticities and boundary values. Note that JM must be

2L1+l and KM must be 2L2+1 where L) and L, are integers.

2
L = L4 giving 2% -1 = 15 moving points, but a word at each end is

reserved and set to zero to simplify the backward recursion; see table 3.2.

53



TABLE 3.1.- FORWARD RECURSION IN ODD/EVEN REDUCTION. COLUMN
ON LEFT IS ORIGINALLY STORED, THEN SUCCESSIVELY USED AND
OVERWRITTEN BY COLUMNS 2, 3, AND L

fs <« a(l)f5+f4+f6

g « all)rgrrgtryg

£13¢ all)e g+fy ety

£y <« a(l)f7+f6+f3

f11¢ aL(1)‘—"11"'f‘1o+f12

f15¢ aL(1)1"15+f1L++f16

£o « al2)rgrrprryy

f5 « a(z)f5+f3+f7

T3¢ a(2)1"13*“1111*‘1"15

fg « a(3)f9+f5+f13

TABLE 3.2.- BACKWARD RECURSION IN ODD/EVEN REDUCTION.

COLUMN ON

LEFT IS ORIGINALLY STORED, THEN OVERWRITTEN BY COLUMNS 2, 3, L4,

AND 5
1 <« 0.0
£y « (£p+ty+rg)/all)
f3 < (f3+f1+f5)/a(2)
£1 « (£y+fg+frs)/all)
f5 < (f5+f1+f9)/a(3)
fg <« (f6+f5+f7)/a(1)
f7 <« (f7+f5+f9)/a<2)
fg < (fg+fs+fq)/all)

< (f13+f9+f17/a(3)

1\

(£11+8g+f13)/al2)

(£15+f13+F17)/a(2)

(£y+fo+fyy)/all)
(£15+F11+£13)/all)
(f1u+f13+f15)/a(1)

(f16+f15+f17)/all)

5k
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The process of odd/even reduction described for a simple matrix such as
that given by equation (3.32) can now be applied to a block matrix such as that
given by equation (3.36). The concept is simplified if we refer at once to
tables 3.1 and 3.2 and recall that matrix and algebraic arithmetic are identi-
cal in addition and differ in multiplication only on commutivity. Consider,
first, table 3.1. Note that all operations are formed by simple additions and
multiplications of the data existing in the single f array at any given stage
in the calculations. The same is true in the two-dimensional case, except that
the operations are on the column vectors f. For example, for the two-
dimensional case, in table 3.1 the first entry of the second column would be
replaced by A(ljfg + fo + fy, which is a tridiagonal multiplication into a
vector and two vector additioms.

The two-dimensional equivalent of equation (3.3L4a) is formed by the matrix
definitions

g(l) -a, é&(5L+1> = a0, (8) oy (3.37)
The essential part of this relationship is that A(2+1) can always be reduced
to a product of tridiagonal matrices. Thus
6‘1) -2 3
- EDeED
4(3) =(A-V2-/21)a-V2+/2T)A4+/2-V2I)A+V2+V/2T)
? (3.38)
(2) _
A= (A - DA - 2D . (A=A T)
x = 2%7!
A, = 2 cos L2ZHT =1, 2, , k
J 2k J

In general, 3(2) is the product of 22—1 tridiagonal matrices that have constant
entries along the two off diagonals and differ only by the constant Aj along
the diagonal. If we write a subroutine that will perform such a simple opera-
tion, we can apply it twice in succession to form each of A 2)£5, A z)gg, and

(2) (3)f9

A" "f13, and four times to form A
table 3.1.

in the two-dimensional equivalent of

The remarkable property of the process being described comes in the two-
dimensional equivalent of the procedure outlined in table 3.2. The mabtrix
equivalent of an algebraic division is a product using the matrix inverse.

This would greatly complicate the extension of the backward recursion if the
factorization shown in equation (3.38) did not exist. Since such a factoriza-
tion does exist, however, the actual computation of EM in the two-dimensional
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equivalent to equation (3.35)

(L), . (D)
A gy = £y (3.39)
is found by performing 2L—1 tridiagonal inversions (each identical to the
scalar manipulations shown in tables 3.1 and 3.2 on the data in fiy. For exam-
ple, the two-dimensional equivalent of (£3+fi+fs)/al2) in table 3.2 is

(A -v/21)"Ha+ /21)" g + £1 + £5) (3.10)

and is computed by two successive calls to a tridiagonal inversion subroutine,
each call having a different constant for the diagonal entry but both with a
fixed constant for the two off-diagonal entries.

This describes the concept of one- and two-dimensional odd/even reduction
of the Poisson equation. In application to the two-dimensional case (eq.
(3.31)) the matrix products formed by the forward recursion can lead to very
large floating point numbers. A clever way to avoid this numerical complica-
tion has been devised by Buneman and a FORTRAN program that computes the
Poisson equation for Dirichlet boundary conditions using Buneman's version of
odd/even reduction is listed in reference 12.

BOUNDARY CONDITIONS

The boundary condition for the energy equation (3.1b) is satisfied by
specifying either the temperature or the heat flux at the wall. The boundary
condition for the Poisson equation (3.1lc) is satisfied by setting V¥ = 0 along
the edges. This corresponds to the condition of no mass flow through any por-
tion of the wall. The boundary condition for the vorticity equation (3.1b) is
somewhat more subtle and is described below.

For a viscous fluid, the additional condition of no slip at the walls is
met if the normal stream-function derivative (or tangential velocity) vanishes
at the walls. This boundary condition is satisfied in the vorticity equation
(3.1a) in the following way. First, notice from equation (3.lc) that along a
horizontal wall

w = =¥ (3.41a)
and along a vertical wall nn

w = -ng (3.41b)

since V¥ itself is zero along the walls. Next consider a Taylor's series
expansion for the stream function at a point on the wall. Using it to find the
value of ¥ at an interior point next to the wall, one finds (taking the bot-
tom wall as an example)
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= ¥ 1 (3% 2 3
¥y, =¥yt (8n>j lAn + 3 (Bn2>j 1(An) + 0(An) (3.42)

Again Wj;1 must be zero since it is the value of ¥ at the wall, and now we
can apply the no-slip condition by also setting the tangential velocity at the
wall (9¥/3n) , €qual to zero. This reduces to a boundary condition for w;
namely, at t d'wall w is given by

ws g = —TE%T% (3.43)

where VYi 0 has been calculated in a previous predictor or corrector sequence.
Similar Fdrmulas are also derived for the other walls. TFormulas of higher
order may be obtained by expanding about deeper interior points; for example,
the second-order approximation for points (j,l) is found by simultaneously
solving the expansions

\ 2 3
CAd L [3Z¥ 2 . 1 (27¥ 3 Y
3»2 Al}j,l * <8n). (an) + 3 <Bn2>. (4n)® + 3 <8n3>. (4n)* + olan)
Jsl Jdsl Jdsl

AY

(3.LkLa)
oY 32\}>\ 2 L 33\{; 3 ﬂ
B =B - 2| =— A = =

LI [yj,l + 2 <8n>j’1(m) + < - j’1( n)?% + 3(8n3>j,1(An) + 0(An)

(3.44Dp)
to obtain
8y - v
= hRY J.3

Y5007 7 5(8n)2 (3.45)

Singularities exist in the analytic solutions for the flow at the corners
of the box, and it is possible for a corner to lie outside the radius of con-
vergence of a Taylor series expansion about one of the neighboring points. 1In
fact, the calculations did show instabilities near the corner points when the
higher order equations were used, and it is believed they developed for the
reason just described. As a result, the lower order equations, typified by
equation (3.43), were used for the boundary condition on the vorticity through-
out the calculations. The sacrifice in accuracy is not considered important
for the nature of the mixing problem involved.

COMPUTATIONAL PROCEDURE

To begin the convection calculations, the initial wvelocities are set to
zero and the temperature distribution specified. The subsequent computational
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procedure is described by the following steps:

1. Calculate the predicted vorticity and temperature distributions from
equations (3.2a) and (3.2b).

2. Calculate the corresponding stream function by Buneman's double cyclic
reduction method.

3. Apply the wall boundary conditions for the vorticity from equation
(3.43).

4, Calculate the corrected vorticity and temperature distributions from
equations (3.2c) and (3.24).

5. Calculate the corresponding stream function as in step 2.

6. Apply the wall boundary condition as in step 3.

The calculations for one time step are now complete. The procedure continues
until the desired number of time steps are complete.

CONCLUDING REMARKS

A finite-difference predictor-corrector scheme has been described for cal-
culating convection in a rotating tank. The assumption is made that the sta-
bility bounds and the order of accuracy of a set of nonlinear difference equa-
tions can be estimated by studying an "equivalent"” set of linear model
equations. Such being the case, it is pointed out that not only can the sta-
bility of the linear difference equations representing convection be estab-
lished, but the complete analytic solution of them can be written for the
n(th) time step without ever going to a computer. Furthermore, such an ana-
lytic solution to a set of linear difference equations with periodic boundary
conditions predicts stability boundaries identical to those obtained from an
amplification factor analysis. The accuracy study for these convective equa-
tions is based on a study of the modified partial differential equations, and
it shows that the approximations are characterized by second-order errors in
both dispersion and dissipation.

Finally, a fast, efficient, and direct numerical solution to Poisson's

equation is described. It is based on double cyclic reduction techniques
introduced by Buzbee, Golub, and Nielson in reference 13.
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CALCULATION OF THERMODYNAMIC PROPERTIES OF OXYGEN

NEAR THE CRITICAL POINT
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SUMMARY

Methods are developed for the versatile and efficient evaluation of the
thermodynamic properties of cryogenic oxygen. The semiempirical equations of
state of Stewart are used in this discussion. An arbitrary choice of indepen-
dent thermodynamic variables within a limited set is allowed. Comments on pro-
cedures that lead to an expansion of the variable set are given. A method for
the efficient rapid evaluation of integrals representing volume averages of
spatially varying thermodynamic quantities is described. A number of graphs
are given that show state relations plotted in different ways to demonstrate
the methods used. In addition to being instructive, these curves serve as a
valuable ready reference on cryogenic oxygen properties.

INTRODUCTION

The principal objective of this work is to formulate the thermodvnamic
properties of cryogenic oxygen to permit their efficient evaluation by elec-
tronic computers. The resulting computer programs are used in conjunction with
other codes in the simulation study of the behavior of gases stored in tanks of
maneuvering space vehicles. Comments on the complementary numerical codes
along with discussions on the complete problem and background surveys related
to this report are given in chapter 1 of this report. It is worthwhile to
orient the reader, however, on the material presented in this article by
briefly reviewing a few pertinent considerations that necessitated the availa-
bility of accurate thermodynamic properties that can be rapidly computed.

In the case of the Apollo spacecraft, the onboard cryogenic storage system
provides gaseous hydrogen and oxygen (oxygen is of particular interest in this
study) used in the electrical power system and environmental control system of
the command and service module. Fluids are stored in the system at tempera-
tures and pressures slightly greater than critical where the density is so
large that the fluid is not distinguishable as being either liquid or gas.
Cryogenic storage allows spacecraft minimum volume and welight regquirements to
be met and ensures single-phase delivery of the fluids (ref. 1). To maintain
a constant pressure within the tanks, as required by the electrical power and
environmental control systems as oxygen is drawn from the system, heat is added
by, means of contained electrical heaters. The added heat can remain in the
neighborhood of the heaters, however, in the absence of conductive or convec-
tive mixing; there then result large thermal gradients ('thermal stratifica-
tion") within the stored fluids. Because oxygen has a very low thermal conduc-
tivity, conduction currents are negligible. Also, convective mixing processes
do not take place in the absence of any spacecraft accelerations in the other-
wise gravity-free enviromment. If particularly severe thermal stratification
occurs, a spacecraft maneuver (such as a midcourse correction on a flight to
the moon, for example) could lead to mixing that would then result in a large
abrupt pressure decrease or 'pressure collapse' (ch. 1 and ref. 2) with atten-
dant possibility of catastrophic equipment failure. Prior to Apollo 1k, fans
were included within the storage tanks to ensure that the fluid was mixed and
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uniform temperatures maintained. The subject study of this report is that of
investigating the use of vehicle maneuvers (in particular, rotations) as a
means toward the maintenance of uniform temperatures and pressures. The nomi-
nal operating pressure requirements of the cryogenic gas storage system are

900 *35 psia (62 *2.4 atm) or, stated in a slightly different manner, that the
pressures must not deviate by more than about LI percent from the mean stated
value. This suggests that accurate relations are required for. gas properties
if reliance is to be placed on interpretations gained from numerical computa-
tions. The semiempirical thermodynamic properties published for cryogenic oxy-

gen by Stewart (ref. 3) and by Weber (ref. 4) satisfy the accuracy requirements.

One complication that occurs in the analytical description of fluid prop-
erties near the critical point is that the properties require two independent
variables with both variables showing strong nonlinear behavior. In this
respect, the relatively simple descriptions such as provided by van der Waals'
or Beattie-Bridgeman's equations of state (see, e.g., ref. 5 or 6) are not at
all satisfactory. In fact, the required state equations can be gquite compli-
cated, as shown in both Stewart's and Weber's papers (refs. 3 and 4). An addi-
tional problem that occurs with such relations is that should a different
choice of independent variables be required, considerable computer time can be
expended in the application of conventional inversion methods.

In the discussion that follows, particular emphasis is placed on formulat-
ing the thermodynamic properties of cryogenic oxygen in such a manner that
flexible and time-wise efficient evaluations are possible. By flexible it is
meant that an arbitrary choice of independent variables is allowed. A minimiz-

ation of redundant arithmetic operations leads to an efficient computer progran.

It was found that a "modified virial" representation of Stewart's equa-
tions leads to the least computational redundancy. Finding zeros by means of
successive linear interpolations (ref. 7) provides the means for obtaining
rapid function inversions. The thermal equation of state and the caloric equa-
tion of state are plotted in several different ways to demonstrate the flexi-
bility of the procedures described.

A method is also described that is particularly wvaluable for the rapid
evaluation of volume integrals of thermodynamic spatially varying quantities
(e.g., temperature) where the integrals represent volume averages. An impor-
tant concept of this method is that accuracy can be traded to obtain computing
speed. Thus, by sacrificing the numerical accuracy beyond that specified by
the semiempirical formula, one obtains significant savings in computational
time. The method 1s particularly well suited for certain classes of numerical
simulation studies, since evaluation time is nearly independent of the number

of spatial mesh points.

The author wishes to acknowledge several helpful conversations with Prof.
Richard B. Stewart, Mechanical Engineering Department, University of Idaho,
Moscow, Idaho, and with Dr. Loyd A. Weber, Cryogenics Division, Naticnal
Bureau of Standards Laboratory, Boulder, Colorado.
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THERMODYNAMIC QUANTITTIES

There are several accurate representations for the thermal equation of
state for cryogenic oxygen. In one case (ref. 4), accurate experimental
results in tabular form are published that encompass a broad range of values of
pressure and temperature (54.6° < T < 300° K; 1 < p < 330 atm). A value of a
state variable, say pressure, can be made avallable on an electronic computer
by the use of a table-lookup and interpolation procedure once the other pair of
variables, density and temperature, are specified. In the second case (ref. 3),
the state wvariable is represented by a complicated analytical function of two
independent variables. Specification of values for the two independent vari-
ables and evaluation of the function are then necessary to obtain a value for
the state wvariable.

A purpose of this work is to design a flexible procedure for obtaining
thermodynamic state variables -~ that is, a procedure that allows the rapid
determination of an arbitrary variable given any pair of other wvariables. To
expedite this task, it was decided to minimize the coding problems encountered
by representing the state equation as a complicated analytical relation. As a
result of interpolation problems, table-lookup procedures that depend on two
independent variables often are inapplicable to general usage. For example,
when derivatives of thermodynamic quantities are required, numerical differen-
tiation of table quantities can result in an unacceptable lack of smoothness.
Although one can develop procedures to overcome these difficulties, they are
avoided by the use of the analytical relation.

In the discussion that follows the analytical representation given by
Stewart in reference 3 is used. It will also be shown that by modifying
Stewart's original formulation to one similar to the virial state equation
(see, e.g., ref. 6) one can significantly reduce computer evaluation time.

One should note that although Stewart's formulation was used, much of the
content of this chapter is of a general nature and therefore applies indepen-
dently of this particular choice.

Quantities Defined Explicitly

This section concerns the various thermodynamic gquantities that are
defined explicitly in terms of representations containing the independent vari-
ables. Particular emphasis is given to formulations of the state equations
where redundant arithmetic operations are held to a minimum; hence, evaluation
time 1s also minimal.

The particular state relations to be discussed are the analytical formula-
tion of the theérmal equation of state p = p,{(T,p), the equivalent "physical
representation p = pP(T,p), and the caloric equation of state e = U(T,p).

Thermal equation of state (analytical representation)—The equation of
state that results from Stewart's work is given by
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ny Y
v=p 28 _ o, (k.1pb)

In equations (L4.1) p, T, and p are the variables representing pressure, tem-
perature, and density, respectively. The symbol pa(T,p) denotes the right-
hand side of the equation; the subscript c¢ signifies critical point value.
The quantity R 1is the universal gas constant. Values for the coefficients in

the above equation, nj through npg, are listed in the first column of table L.1.
Constants as well as some convenient conversion factors are listed in table L.2.

In reference 3, the coefficients n; were determined by the use of a least-
squares procedure applied to experimental data provided largely by Dr. L. A.
Weber of the National Bureau of Standards Laboratory, Boulder, Colorado. The
measurements have since been improved by eber (ref. L4). Differences between
the latest measurements and the quantities computed by the use of equation
(k.1a) are not significant (of order 0.1 percent) except in the neighborhood of
the critical point where the density deviates by about 2 percent. The error
for pressures and temperatures is less in this region.

Several choices for the n; given in equations (4.1) are listed in table

4.1; they differ only in units. In the first two columns of the table, guanti-
ties n; are given both with and without a bar; the =n{ with bar are the
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TABLE 4.1.~ COEFFICIENTS FOR STEWART'S THERMAL EQUATION OF STATE

(REF. 3) IN DIFFERENT UNITS

n

i
e/lite{; T,°K)

nj
(p ,g~mole/cc;

T, °K)

*

. ny
(dimensionless)

3.

1.

38759078D-03
31606223D 00
38828523D 03
92049067TD 0T
90260005D 10
70101162D-08

.96822375D-05
.07022502D-03
.71019658D 00
.59419602D 01
.02209557D-06
.90L454505D-0k4
.21708394D-05
. 44255945D-03
.73655508D 02
.01752841D 05
.49528517D 07
.86724004D-01
L6781T7667D 02
.056T7090LD 05
.63771075D-03
.12012813D 00
.46829491D 02
.08868924D-0L
. 60000000D-03
.57000000D-01
. 50000000D-01
.00000000D-01

k,
.60390749D 04
@,
2.34053474D 11

-1

=-3.
-6.
.71101019D 02
.3978867TD Ok
.30296280D 07
.38030799D 08
.2h564530D Ok
.32110154D 06
.148328096D 08
.9T7678886D 10
.11636930D 09
.6775133L4D 12
.25976365D 1k
.08066567D 13
.26393959D 15
.28782933D 18
.8707T425D 16
.36511926D 19
.T78943605D 21
.05781529D 03
.60000000D 03
.9L366040D Ok
.50000000D-01
.00000000D-01

1
= w3\

WHEFEFOARFRWRE FWMDODNOEFEND

12851466D 01
00422923D 07

537hh819D 14
94792010D-01

5.
.38172091D 00
-3.
3.
-2.

-1

-1
1
8

-2

|
no

O HFHFHFFRPO O FWWWMN

50454716D-01

23827743D-01
51405940D-02
21722921D-03

.9116003L4D-02
.72631459D-01
.k9T721211D-02
.45123930D-01
.10038991D-02
.95241697D-02
.55459957D-02
.0286L05L4D-02
.92722326D-02
.01481465D-01
.13936476D 00
.52721624D-01
.21175040D-02
.T79765L26D-01
.5828L972D-01
.0k11h692D-01
.33656530D-01
.13200675D-01
.32903264D-03
.95505258D-01
.66253033D 01
.4611L912D-05
.00000000D-01

1

_ |(p,atm; p,g-mol

1

2 -1.

3 -7.

N

5 -2.

6 ~5.

T T

8 6

9 -2
.10 -3
11 1
12 1
13 1
1k 2
15 1
16 3
17 -3
18 8
19 -2
20 1
21 5
22 -1
23 1
2L 9
25 -5
26 -1
27 -3
28 9
Note:

The last four digits beginning with D

are representations for the

exponent; for example, 9.00000000D-01 can also be written 9x10~1,

TABLE L4.2.- CONSTANTS AND CONVERSION FACTORS

R {(Universal Gas Constant)

Pe = 50.1L atm

T, = 15L.77° K

Ppe = 13.333 g-mole/liter
e. = Th2.2 J/g-mole

Conversion factors:
1 g-mole O, = 31.9988 g (Cl2 = 12.000 scale)
1 liter-atm = 101.3278 J ‘(abs.) = 24.2179 cal = 0.0960417 Btu
1 atm = 1.01325x10° N/m? = 1.01325x108 dyne/cm? = 14.696006 1b(wt)/sq in.

Critical point values for molecular oxygen (ref. 3):

0.0820535 liter-atm/g-mole °K
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values listed by Stewart in his thesis (ref. 3), and those without a bar. are to
be used with the equations to be introduced here. These quantities (except

nys through nyg) differ by a factor that is the universal gas constant.
Stewart's units for pressure, density, and temperature were abmospheres,
g-mole/liter, and degree Kelv1n, respectively (in Weber's paper, ref. 4, the
corresponding choice is MN/m? . g—mole/cma, and degree Kelvin). The coeffl-
cients without a bar have units (n;) simply expressed as the ratio of powers of
density and temperature (in Stewart's units) as indicated by the symbols p

and T listed on the right of the unbarred guantities in table L4.1. The con-
version factors reguired for transformation of these constants are listed 1n
table 4.2. In the last column of table 4.1 the coefficients, denoted as nl,
are made dimensionless by appropriate ratios of the critical point values T,
and p,. The dimensionless thermal equation of state that results can be use-
ful also for the approximate evaluation of state properties of other nonpolar
molecules (such as Ny, A, Xe, Hy) by introducing the "principle of correspond-
ing states" (ref. 6, p. 235)

The analytical formulation, equation (L4.1), is fairly complicated and is
not in the most efficient format for frequent evaluation by an electronic com-
puter. More useful 1s the modified virial formulation! given by

P -
pRT z

8
1+ ] A mel ) (h.2)
i=1

Most conventional state relations can be cast in this form (see, e.g., ch. 3
and L, ref. 6, and ref. 8). Although it can be argued that equation (L.2) rep-
resents only a trivial reformulation of equation (4.1), it will become evident
that worthwhile advantages are realized by capltallzln§ on certain features of
the modified virial formulation. The quantities (T) and gi(l)(p) are
defined in the first columns of tables 4.3 and 4.L4. The virial coefficients,
the coefficients resulting from a power series expansion in density of the com-
pressibility factor Z defined above, are readily found (ref. 6, p. 131, eq.
(3.0-1) ) and are given by the following linear combinations of the A 5
quantities.

~
= Agl)
NERES

Agl) (h.3)
Agl) + Aél)

R N .
i

S

'Hust and Gosman (ref. 9, p. 231) have discussed the criterion required of
a real-fluid thermal equation of state to ensure nonsingular state behavior as
the ideal-~gas limit of very low densities is reached. The thermal state equa-
tions that can be placed in the modified virial form always satisfy their
stated criterion provided that the functions gi(n)(p) are bounded as the den-
sity becomes infinitesimally small.
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TABLE L4.3.- TEMPERATURE-DEPENDENT COEFFICIENTS REQUIRED
FOR STEWART'S REPRESENTATIONS

T

N

~g—>exp[n27(T—Tc)2§}

exp[n27(T—Tc)2§}[?n27(T-TC) -

TABLE L4.l4.- DENSITY-DEPENDENT COEFFICIENTS REQUIRED
FOR STEWART'S REPRESENTATIONS

o

(

p)

gt
e ) = [P 2

(indefinite integral)

(p)
dp

®
e e

D EDNFTwN
()

(1)
o

o OV W

{ © T DD T O D D DO
o]
N
[oe]
<
o

n

2
26"

p

p2/2

03/3

ot/

e%/2nog
euu/2n§5
euu(u—2)/2n25

exp(nygv?)/2nognog

Note:

u

p%ngs; v = p

Hog nog

]

p
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When the state equation is expressed in the modified virial form, approxima-
tions are readily introduced that can lead to simplifications (e.g., for suf-

ficiently small densities, say p < VIlO‘S/nzsi, only the lowest order virial
term need be considered).

A more important aspect of the formulation is that the variable dependence
is separated. That is, the temperature-dependent quantities are evaluated sep-
arately from those that are density dependent. Use of this feature saves con-
siderable computational time. For example, in the case where pressure and
temperature are given and the density (implicitly defined) is to be found, as
discussed in a later section, the required computer time is greatly abbreviated
if the temperature quantities are evaluated only once. Further, since the

(1)

coefficients A; '(T) are polynomials in temperature, it turns out that by
separately evaluating and storing the individual terms (in parenthesis in

table 4.3), one can use the same quantities during the subsequent evaluation of
other thermodynamic quantities. For a given density and temperature, once the
thermal equation of state is evaluated relatively little additional computer
time is required to evaluate the other thermodynamic properties obtained by
differentiation or integration of the thermal equation of state (internal
energy, enthalpy, specific heat, and entropy). The significance of these com-
ments will be particularly evident 1in the discussion that follows.

Thermal equation of state (physical representation)—The relation pgi(T, o)
as defined in the previous section is multivalued in terms of the density vari-
able p (fig. 4.1(a)). Such multiplicity, of course, is not physically realis-
tic. It is therefore convenient to define a new function p = pp(T,p) that is
single valued, although discontinuous, and is a physical representation. We
define this function as

pp(T,p) = pa(T,D) T:T, end 0<p< 0.0k2
T < TC and p < oSV(T)
or
p 2 oSL(T)
= pv(T) T < T, and pSV(T) <p s pSL(T) (L.54)

where p,(T) is the vapor pressure equation later defined by equation (L.9),
pSV(T) is the density corresponding.to the saturated vapor boundary, and

pSL(T) is the density corresponding to the saturated liquid boundary. The pro-
cedure that leads to the evaluation of these quantities is discussed in a later
section. Note-that although pP(T,p) is identical to p,(T,p) almost every-
where, it is not convenient to code both these quantities as the same subpro-
gram. The reason lies in the fact that pa(T,p) is required in the evaluation
of the implicitly defined boundary quantities pgy and pgy, contained in

pp(TsQ)-

Caloric equation of state—Once the thermal equation of state and an
expression for low-density specific heat are given, an equation for the inter-
nal energy can be derived that is valid for all temperatures above critical and
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for temperatures below critical provided that the computed pressures do not
exceed the vapor pressure p,(T) (or the specified density is always less than
the saturated-vapor density pgy(T)). Introduction of the Clausius-Clapeyron
equation allows one to generalize the energy equation to include also the low-
temperature, high-density (i.e., high pressure p 2 py(T)) cryogenic region.
The derivation procedure will not be discussed here (see, e.g., Hust and
Gosman, ref. 9). The emphasis here is on the presentation of optimal formula-
tions of the thermodynamlc quantities that lead to their efficient computer
evaluation.

The caloric equation for internal energy (see, e.g., ref. 9) with terms to
account for energy changes in the two-phase region is given by

U(T,p)

o
[

U(T,,0) + U°(T) - U°(T,) + U(T,p) - U(T,0) , T 2T, (4.52a)

U(T,,0) + U°(T) - 0°(T,) + U(T,0)[S(pgy=p) + S(p-pgy )]

~U(T,0) + 8(p-pgy ) \U(Tapgy) = U(Ts0q:)5(p-pg )

dpv(T)

daT i

, PsL™Psv|Psn( PPgy

S(par=p) + S(p=pr M| D (T)- T
PgyPsr| P \PSL‘OSV> SL SLoH TV

T < T
(o]
(4.5b)

where the constant U(T,,0) = H@o - RT, = 1133.655 J/g-mole (H:%O = 1590.929

J/g-mole and T, = 55° K) is the low-density or ideal gas reference energy for
oxygen. The quantity 8S(x) is the symmetrical Heaviside unit step function,
which is unity or zero depending on whether the argument x 1is greater or less
than zero, respectively, and has value 1/2 when the argument is zero. The
energy quantity U(T,p) is obtained by evaluation of the indefinite isothermal
integral

U(T,p) = fp [P - T(%%)Q]T g%- (4.6)

The ideal gas (or low density) constant-volume specific heat and its indefinite
integral U°(T) (needed in eq. (4.5)) are given by

cO(T) 8 e c c (e, /T) 2
v J 8 9 9
R - 221 <—R‘T ) * (—R> =Xp (—T>[——e@(c9m_l] (h.7)
Uv°(T) 1 T oo (T)
RT E’f VR ar
8 o TA-t ¢ ¢ (e /T)
1 2 3 8 9

Tl



The coefficients Cyp/R are listed for oxygen in the first column of table 4.5,
Note also that the third term of the second equation has been removed from the

summation sign.

Equation (4.5) also requires the vapor pressure equation and its
derivative as given by

7

n pv(T) =a + ) (alT)2 (k.9)
2=1
dp_(T) (T) 7

LA e IRk (4.10)
2=1

The coefficients a, are listed in the second column of table 4.5.

TABLE L4.5.- DIMENSIONLESS COEFFICIENTS FOR THE LOW-DENSITY
SPECIFIC HEAT RELATIONS (EQS. (L.7) AWD (k.8)) AND FOR
THE VAPOR PRESSURE RELATIONS (EQS. (L4.9) AND (L4.10)) FOR
OXYGEN

Cz/R ag

2
1 | -1.86L4L2361D 02 |-6.25967185D 01
2 2.07840241D 01 2.47450429D 00
3 | -3.426L42911D-01 |-L.68973315D~-02
3.50297163D 00 5.48202337D-04
2.05866482D-07 |-L.09349868D-06
-1.11035799D-08 1.9147191LD-08
.08612876D-11 | -5.13113688D~11
.0189L4691D 00 6.02656934D~14
.23918105D 03

N

Coefficients from ref. 3)

The final quantities are the temperature-dependent saturation densities
pgy(T) and pSL(T) described earlier.

The caloric equations (4.5) are actually more general than the representa-
tion given by Hust and Gosman (ref. 9, eq. (43)). Here the equation is gener-
alized to account for the changes in internal energy in the two-phase region
due to the work done as isothermal changes in volume occur (i.e., the region
T < T, and pgy < p < pSL)' The factor

o b = o \
SL SV
/ S(oSL - p) +38(p - DSL)

° \fst ~ Psv

was introduced to take account of these effects. Because of the coefficient
step function S(p - pSV)’ the curley bracket expression makes no contribution
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to the internal energy for densities less than the value on the vapor boundary
psy(T). For densities larger than that of the saturated vapor the bracket fac-
tor increases in value as the ratio of specific volume differences given by

Av(p,0qy) ) /ogy = 1/p ) Pgr,(P=Pgy)

(k.11)

Equation (4.11) inereases varying linearly with volume until the saturated-
liquid boundary is reached. The bracket expression-has the value unity for all
values of density in the liguid region p 2 PgI, - The coefficient of the term
U(T,p) in equation (4.5b) is nonzero only outside the two-phase region. Aside
from the differences in notation, the caloric equation gives the same results
as that given by Hust and Gosman everywhere outside the two-phase region.

The Heaviside symmetrical unit step function was introduced to minimize
the number of regions to be considered by separate energy equations. When the
energy equations are coded for electronic computer evaluation, however, the
unit step function is most conveniently represented by use of logical state-
ments in such a manner that the respective coefficient quantities are evaluated
only when the step function is not zero (i.e., has positive arguments).

The quantity in the caloric equation that depends explicitly on the ther-
mal equation of state is U(T,p) as defined by equation (L4.6). It is worth-
while to obtain an expression for this quantity that depends only on the coef-
ficients contained within the modified wvirial equation of state. We first
write the expression for the thermodynamic derivative (Bp/BT)p. We find

(%%p = QR[‘I‘ (g%)p + Z] (k.12)

where 6
T (%—T—>p -1 el V(168 (o) (4.138)

8
= 1 Aiz)(T)gil)(p) _ (4.13b)

i=1

|
The coefficients TA§1> (T) contained in equation (4.13a) (prime denotes dif-
ferentiation) are listed in the second column of table 4.3. ©Note that these
coefficients contain terms that differ by integer factors from the terms con-
tained in the thermal equation of state listed in the first column (except the
eighth coefficient). Hence, little additional computer time need be expended
provided the caloric and thermal equations of state are both evaluated together.
A similar comment applies to the evaluation of the vapor pressure equation and
its associated derivative, as well as the low-density specific heat and its
associated indefinite integral. The indefinite integral, equation (L4.6), can
now be evaluated, with the result
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8
v(r,e) = -rr ] AP el o) (1.21)
i=1
where '
giz)(p) = [P gil)(p) g%_ (4.15)

2
The quantities g§ )(p) are defined in the second column of table 4.4, Note

(2) (2)

that both coefficients Ajf and g; ° have been defined such that their respec-
tive products are also dimensionless. This turns out to be particularly
advantageous when units conversion is required.

Quantities Defined Implicitly

Often a choice of independent variables other than density and temperature
(e.g.; pressure and temperature or energy and density) would be more advanta-
geous. Since the state equations are sufficiently complicated to preclude the
existence of explicit relations with the desired variable dependence, one has
to resort to numerical evaluation. A procedure is described here for "invert-
ing'" the thermal equation of state to obtain, in effect, the state relation
o = p(p,T). Extension of the procedure to obtain analogous equations with
still different variable dependence is straightforward and is not discussed
here.

Density is obtained as a function of pressure. and temperature by solving
for the zeros of the equation

t(p3T) = p - p,(T,p) (4h.16)

This equation is readily solved for all values of pressure and temperature,
except that an additional complication results in the case where temperatures
below critical are specified. The "successive linear interpolation procedure"
described in reference T was found satisfactory for finding the roots of equa-
tion (4.16), particularly since it requires only that the lower and upper
bounds of the roots be specified. The procedure converges quite rapidly; in
general, fewer than eight separate evaluations of f(p), or "iterations," are
required to obtain a value of the root. For specified temperatures greater
than critical the root of equation (4.16) lies in the interval O < p < 0.0k2
g—mole—cm3. The constants that represent the interval boundaries were found by
searching the tables given by Stewart (ref. 3) to find the maximum and minimum
values of the density.

In the case that temperatures below critical are specified, f(p) has zero
value for three distinct values of density. The root-finding procedure then
requires isolation of the three branches of the multivalued function pa(T,p)
for T < T,. Figure 4.1(a) shows the multivalued character of pressure plotted
as a function of density. The variocus curves pictured are isotherms. The
entire region above the critical isotherm is the region where the density
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bounds have already been specified. Note that a specie is characterized as
being in the gas phase when stored at pressures and densities that lie on iso-
therms above the critical isotherm. The region below the critical isotherm and
to the left of the line labeled pgp(p) in figure h.1(a) isolates what we. shall
call the vapor region or branch. In this region, the pressure is also less
than the vapor pressure pV(T). We define pg(p) by

- _p\® .1
where
a = n(p /p1)/tn(p /p1)
p1 = 1 atm
p1 = 3x10~% g-mole/cm?

This relation is readily found by observing that it represents a straight line
on a log-log graph between the pair of points having coordinates (pj,p;) and
(pespe)+ The line pp(p), although somewhat arbitrarily defined, is a simple
representation that can be rapidly evaluated numerically.

The two-phase branch is bounded on the left by the line pB(p) and on the
right by the three vertical segments p = p,, 150° < T < Te3 0 = 0.02,
120° < T < 150°; and p = 0.03, T < 120° K. 1In this region, pressures computed
from the equation pg(T,p) do not agree with experimental data; hence, this
region is ignored in the iteration procedure. 1In fact, the pressure depends
only on temperature in the two-phase region and therefore is independent of
density. Finally, the liguid branch is isolated by observing that it is
bounded by the three-segment curve, the critical isotherm and the already spec-
ified largest density value oppox = 0.042 g-mole/cm3. 1In this region, the
pressure is characterized as having values that exceed the wvapor pressure

py (T).

The root-finding procedure converges most rapidly for bounds that most
closely surround the value of the root. The values given above are somewhat
arbitrary, and one can, perhaps, introduce even better bounds. Those specified
above, however, were found satisfactory. If, as recommended earlier, the

1
A£ )(T) quantities (eq. (4.2)) are reevaluated only when the temperatures are

(1

different (a similar comment applies for the g )(p) relations), then,
although about six to eight iterations are required to find p(p,T), the actual
computer time expended is only a factor of two or three greater than the long-
est evaluation time required to find pa(T,p) (i.e., the time required when
both p and T have values that are different when compared to a previous
evaluation).
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For the reader's convenience the diagram below shows a logical sequence of
operations that leads directly to the categorization of a specified combination
of the variables p and T into a particular branch. . The rounded blocks
labeled £(p) (eq. (4.16)) denote the root-finding procedure described in refer-
ence T with appropriate bounds as specified.

By slightly altering the proce-

p=p(p,T) .
dure Jjust described one can also

p,T specified

p=pgy(T) pepg (T) obtain the saturation densgities
(;)an (:)Mn, pgy(T) and pgp,(T). As commented ear-
T specifred T specified . . -
lier, these quantities are the exact

boundaries of the two-phase region.
Specifically, these quantities are the
outer two of the three roots that sat-
isfy f(p) = 0, T < T, where the
specified pressure 1s that computed
from the vapor-pressure equation
p = py(T). We have been concerned
pa(T)  (00205p<0042) | (pop<0042)  with the removal of the multivalued
f(p) - character of py(T,p) so that o(p,T)
can be evaluated unambiguously. It
turns out that special allowance must
be made for the computation of the
saturation densities. This is indi-
@ cated on the flow chart by two special
entry locations (the small circles
Flow chart that shows the sequence of operations denoted separately as pgy(T) and
required to evaluate density p(pT) as well as the pgr,(T)) at which point p = py(T) and
wnnaﬁondmmnksps\(T)andpSIKT) T are specified. By this procedure,
the saturation densities can be accu-
rately computed for all temperatures
less than about 150° K. For temperatures larger than this value but less than
T, the saturation-density curves (fig. 4.1(b)) vary little with changes in
density; therefore accurate numerical evaluation is difficult. For the temper-
atures 150 < T s T,, these quantities are specified explicitly, a procedure
that was also found necessary by Weber (ref. L4). The present procedure devi-
ates from that of Weber in that to maintain internal consistency, special
tables, with relatively few numbers of elements, were generated by smoothing
the pgy(T) and pgr,(T) appropriately obtained from solutions of equation (L4.16)
(the uppermost value of density in both tables is precisely the critical value
pc). A table-lookup procedure with linear interpolation was then used to find
such values of the saturation densities.

Liquid

120<T<15Q 150<T<T,

Gas

f(p)

Quantities Based on Spatially Dependent Variables

When a system is not in thermodynamic equilibrium (see, e.g., ref. 10, p.
60) much insight on its properties can be gained by the calculation of certain
thermodynamic averages, such as density and energy. The final state can often
be predicted if some property of the system (say, energy) is conserved while
relaxation to equilibrium occurs. In this section we introduce a method
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whereby one can rapidly predict the final state of a stratified fluid should
the fluid be subjected to some mechanism that results in complete and adiabatic
mixing. Since the procedure requires that evaluations be done numerically,
variables (and summations) defined at discrete points rather than continuous
variables (and integrations) will be considered. Also, since considerable
amounts of computer time can be expended in the evaluation of the thermodynamic
relations over a field of many points, particular emphasis is laid on the
development of a procedure that minimizes redundant arithmetic operations and
is therefore relatively efficient.

The problem described above can be briefly outlined as follows. One first
finds the quantities

Q[P: T(X:y)] (’-l-.lB)

p(x,y)

e(x,y) = U[T(x,y), p(x,y)] (4.19)

by the use of procedures described earlier. The notation shows results on the
left-hand side of the equation that are found from the function evaluations
designated on the right-hand side. The pressure p and the temperature
T(x,y) are considered known. The total mass M and the total energy E are
found next by evaluating the integrals

M

1l
—
<
©
oy
<
1l
o]
<

. (k.20)

[l
1]

fvT pe dv = pev (h.21)

over the entire tank volume. Introduction of the vqlume averages 5 and EE
for the mass and energy densities as defined above (VT is the total tank
volume) then allows one to find

T, = T(pe/p, o) (k.22)

P pp(Tcol, o) (4.23)

col

The temperature is found by inverting the caloric equation of state (L4.19).
The results denoted by the symbols T.,7 and pep] are the temperature and
pressure to which the system would "collapse" and that uniquely characterize
the uniform final state of the oxygen contained within the tank. During a
space flight, o remains constant unless fluid is drawn from the tank. If
severe thermal stratification occurs, mixing (by vehicle maneuvers, for exam-
ple) can bring about large abrupt pressure decreases (see fig. 4.1(c) and dis-
cussion) that could conceivably lead to spacecraft equipment failures. These
concepts are not new, however, and are discussed elsewhere (ref. 2 and ch. 6).
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The evaluation of equations (4.18) and (4.19) is particularly time consum-
ing. The matrix

T, = T(j Ax, k Ay) (L4.24)
Jk
where
x =3 Ax , lsJjs<xdJM
(4.25)
y=kay , 1z<kc<KM

can contain many elements. Furthermore, it can occur that the temperature
field describes situations where many volume elements are at temperatures dif-
ferent from that of the uniform surrounding gas. Once the density and energy,
equations (4.18) and (4.19), are evaluated, we could efficiently evaluate the
integrals, equations (4.20) and (L4.21), if like temperatures were grouped
together. However, we must consider that the Tjk are randomly mixed and like
temperatures are not ordered in any systematic manner. It also appears waste-
ful to recalculate values for, say, density and energy when differences result
that are not numerically significant (e.g., less than 0.1 percent). In the
interest of minimizing the number of separate evaluations of thermodynamic
functions a procedure is to be described whereby, in essence, one first counts
the number of times that a particular temperature appears in the array Tiy.
In this manner a "temperature distribution function" is then constructed that
applies strictly to an equally spaced Cartesian coordinate system. In non-
Cartesian systems, however, additional complexity results. The analytical
foundation for the temperature distribution function is established in the
discussion that follows.

We first define a dimensionless temperature

r=a (-t ) (4.258)

or, in the case that the spatial dependence is discrete,

.. =A (T, -T . ) (L.25D)

where A, and Tpj, are both constants; the value of A, is arbitrary and
Tmin 1S the very lowest bound of all possible temperature values T (or Tik)'
A temperature distribution function F(t) is now defined such that F(t)dr °

is proportional to the volume of a gas with dimensionless temperature between
7T and 7 + d1. Then

F(r) =c [ &% - 1)av (4.26)
T

where C 1s an arbitrary constant set equal to unity; the constant can be used
to normalize the distribution function in such a manner that its integral over
all possible temperatures is unity. The function &(7 - t) is the Dirac $§
function defined such that
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T2

le §(t - 1)ar

equals unity provided t; £ T £ To and equals zero if T is not within the
integration interval.

If the volume elements are discretized, we have

JM,KM

F(r)ar = j’§=1 [s(z - Tjk) - 8(t - Tjk + dT)]ij (h.27a)
JMSKM
= b s§(t - Tjk)dTij (4.27p)

where S denotes the symmetrical Heaviside step function described earlier;
ij = Av-th/VT is a "weighting" function; Av. is the gas volume associated
with the discrete volume element of the cell labeled j,k; Ny corresponds to
the total number of volume centered computational grid points; and Vp already
defined, is the tank volume. It follows that when C = 1, jkajk =N¢. To
3

further clarify the meaning of the weighting function Wi, if all Av. were
equal (such that we have an equally spaced Cartesian system), the Wy would
then all be unity; that is, VT/Aij = Np.

We now seek a discretized version of F(t). A simple possibility is to
define a function

JM KM - ] 1
F(t)dr = j,§=l [?(Tjk - N + E) - s<rjk - N - Ei]wjk (4.28)

Then ﬁN is the weighted number of computational grid points with dimension-
less temperature between N - 1/2 and N + 1/2. The mean dimensionless tempera-
ture Tt within this interval is N {(an integer). How one can evaluate F
rapidly with a computer is explained later. Other thermodynamic variables such
as the associated dimensional temperature Ty, density oy, and energy ey can
be evaluated according to the relations

- N}
F_ =
N N

X

Ty = Tin * & (4.29a)
oy = P (p,Ty) (4.29b)
ey = U(Tys0y) (k.29¢)
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It will be shown that fewer evaluations of these quantities over the entire
grid occur than if a procedure is followed whereby the Tjk are used directly.

Consistent with our definition for the distribution function, equation
(h.26), it can be shown that, in general, the volume average of a thermodynamic

gquantity, say g(r), is given by

S QL OL (4.30)

We separate the integration interval into a sum of subintervals that cover the
range of possible temperature values

1 Nmax N+ 1
g = T z f % g(t)F(t)ar (4.31a)
T N=1 N- 7
where
Nmax = Ao(Tmax - Tmin) (k.310)

To zeroth order, equation (4.31la) is approximated by

1 max .
g =7 ) gF (4.32)
N, i, 0N

The accuracy of the average computed by this equation can be improved by
increasing the value of the arbitrary constant A,, but at the expense of
increasing the number of temperatures Ty at which the therodynamic functions

are computed.

A more efficient procedure is to use a higher order method as follows.
The function g(t) can be expanded in a Taylor series

(m)
g0 (o gym (4.33)

- 1 max o« (m)(N) .
e=g 1 I BT (4.3ka)
t N=1 m=o )
where
1
= _ N+ 5 m
Fim = IN_ iF(T)(T - N)'dr (4.34p)
2

80



Substitution of equation (L4.27b) into equation (4.34b) leads to

FNm = ij [?(Tjk - N + %5 - S(Tjk - N - %{](Tjk - N)ijk (4.35)

With equations (4.3%a) and (4.35), it is possible, in principle, to. compute g
to any order of accuracy, although if one carries too many terms the original
purpose for introducing the procedure - increased computational efficiency - is
defeated. With m = 0, we see that equations (L4.34) and (L».35) become identi-
cal to equation (4.28). One can readily evaluate an equivalent set of rela-
tions that are valid to first order. One first introduces a simple difference
relation for the derivative g(l)(N) and then with the definition

Fo= [T p(0)(1 - |1-N])ar (4.36a)
¥ T

it can then be shown that the average
max

g= ) F
N=1

- (4.36b)

is correct to order (T-N) in the expansion (4.33) for g(t).

The temperature distribution functions are particularly simple to find
with an electronic computer especially when integer subscript notation is used.
To illustrate this point, let F(N) be the variable in FORTRAN language that
represents the zeroth-order representation for the distribution function, equa-
tion (4.28). The one-dimensional array F(N) must be of sufficiently large
dimension to contain all of its possible elements; it must contain at least
NMAX elements, where NMAX is given by equation (4.31b). We next set all of
the elements of F(N) equal to zero since those locations in computer memory
will be used to accumulate the sums denoted on the right-hand side of equation
(L.28). We then process each element in the array T(J,K) that represents the
variable Tjx. We do this by first evaluating N = A,[T(J,K) - TMIN] (note
that we are using the automatic truncation feature of WORTRAN language whereby
the integer on the left-hand side of the equation represents the largest inte-
ger value less than or equal to the floating-point result of the expression
given on the right-hand side of the equation). We define TMIN as the FORTRAN
equivalent of Tp;,. The weighting factor W(J,K) associated with the spatial
point j,k is then added to what is contained in F(N) by the use of the FOR-
TRAN statement F(N) = F(N) + W(J,K). This procedure, briefly outlined, is
easily generalized such that one can find the associated distribution function,
equation (L4.36) or the higher order forms, equation (4.35). Several example
plots of temperature distributions are given in chapter 6. The procedure for
finding the averages, equation (4.32), or, in the case of the higher order rep-
resentations, equation (L4.34a), is straightforward and simple to program on an
electronic computer. It need only be said that one will also obtain additional
savings in computer time if the thermodynamic quantities, say py, ey, that
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correspond to the temperatures Ty are not computed when the associated dis-
tribution function quantities F(N) have zero value.

EXAMPLE EVALUATIONS OF THE THERMODYNAMIC FUNCTIONS

The explicit representations p = py(T,p), p = pp(T,p), and e = U(T,p)
have been defined. By the procedure discussed, one can invert the above rela-
tions so that, in effect, the above list is readily expandable to also include

representations of the type p = p(p,T), p = p(e,T), T = T(p,p), and T = T(e,p).

Our number of equations is now sufficiently complete that a value of any one
variable of the set p, p, T, and e can be found once values are specified for
any other two variables of the set. In principle, by introducing additional
thermodynamic functions (such as enthalpy and entropy, for example) the list
can be expanded further.

In this section a series of plots are given that illustrate the flexibil-
ity of the procedures discussed. These plots are arranged so that the curves
within each graph represent cuts along curves on both the p-p-T (figs. 4.1,
4.2, and 4.3) and the internal energy surfaces (figs. 4.4, 4.5, and 4.6). The
figures are further arranged according to the particular variables displayed
along the ordinate and the abscissa. Pressure is plotted versus density in
figure L.1. Other figures show pressure versus temperature (fig. 4.2), density
versus temperature (fig. 4.3), and energy versus density (fig. L4.4), tempera-
ture (fig. 4.5), and pressure (fig. 4.6). Each figure shows curves for con-
stant temperature (isotherms), constant pressure (isobars), constant density
(isochores), or constant energy (isoenergetics), as appropriate. Such plots
may be instructive as well as useful as a ready reference.

Recall, however, that the basic equations used are semiempirical and
therefore the results plotted have guantitative value only within the regions
where the constants were fitted by the least-squares procedure with experimen-
tal data by Stewart. Thus, the extreme values that are displayed (in particu-
lar, for the largest values of temperature and density) may not be precisely
accurate. The less accurate ranges of the curves are often easily identified
by the inflections or by the discontinuities in curvature occurring at the very
ends of the curves. In the case that more accurate values are required than
can be read from the curves, the reader is referred to the tables given in
reference 3 or Y4, or the equations given in this chapter.

Figure 4.1(a) shows a number of isotherms on a log-log plot of pressure
versus density that illustrate the analytical behavior of Stewart's equation of
state pg(T,p) ((k.1), or, as modified, eq. (4.2)). The lowest isotherm corre-
sponds to a temperature of 100° K. The higher curves are for higher tempera-
tures that increase by increments of 10° K and by 20° K for temperatures above
200° K, except the curve drawn for the critical isotherm T = T,, between the
isotherms 150° and 160° K. Small crosses are drawn on the isotherms below the
critical to show where the phase boundaries intersect. Knowledge of the exact
behavior of these isotherms as computed from Stewart's equation can be quite
helpful. Since the smooth multivalued character of the equation is displayed,
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one can readily isolate appropriate branches in the manner indicated by the
straight-line segments so that an inverse of the function can be obtained, as
discussed in the previous section. Although the state equation contains trans-
cendental terms of a complicated nature (see, e.g., eq. (4.1)) their plotted
results have the same overall characteristics of an equation that is a cubic in
density for the range of parameters shown. As such, the equation is not
greatly different from the van der Waals equation (ref. 6) except, of course,
for the magnitude of the computed values. One observes that the critical iso-
therm contains an inflection at the critical point (which can be identified as
the point where the line segments converge) as indeed it must. An inflection
also appears at the critical point in the density-temperature plane shown by
figure L.3.

Figures 4.1(b), 4.2(a), and 4.3(a) illustrate the behavior of the "physi-
cal" representation of the thermal equation of state (4.4). Note that pressure
is independent of density in the two-phase region as it should be. The manner
in which the two-phase region degenerates to the vapor pressure curve can be
understood by comparing figures 4.1(b) and 4.2(a) (also, cf. fig. 4.3(a) with
fig. 2 in Weber's paper, ref. 4). Difficulty will be encountered if one tests
the computed pressure p = pa(T,p) against the vapor pressure pV(T) as & pos-
sibly simpler scheme than that described with regard to equation (4.L4) for
separation of the vapor from the liquid regions (the rule quoted in elementary
texts on thermodynamics, such as ref. 5, is that for T < T, one has vapor for
p < py(T) and liquid for p > pV(T)). The test fails in the comparison of
p. (T,p) with py(T) since the pressure computed from the analytical representa-
tlon has widely varying values in the two-phase region. One must use the com-
puted saturation densities (see flow chart) to correctly separate regions.

Figures 4.1(c), 4.2(b), and L.3(b) show the behavior of isoenergetic
curves on the respective coordinate planes p-p, p-T, and p-T. In comparing
figures 4.1(b) and 4.1(c) at the lower densities, note that as the temperature
increases, the effect of density on energy becomes less (the isoenergetic and
isothermal lines become colinear implying e - e(T) = constant). We recall
from elementary principles (see, e.g., ref. 5 or 6) that in the low-density
gaseous region the energy depends only on temperature e = e(T). This feature
can also be observed in some of the other figures; see, for example, figures
4.3(p), 4.4(a), and, in particular, L4.5(a) where we see that energy remains
approximately constant for the isochores less than 1 g—mole/cmg. Thus an
appropriate limiting behavior is correctly displayed.

One other feature of importance displayed in figure 4.1(c) is that in the
cryogenic region where pressure and density both have large values, adiabatic
mixing of a thermally stratified fluid contained with a closed container (here
one follows a constant energy curve, say, the curve labeled -2000 J/g-mole)
would have only a small effect on the value of density, but could lead to
rather severe pressure reductions.?

2Ry use of thermodynamic arguments it can be shown that during mixing the
pressure reduces rather than increases (ref. 2).
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Figures 4.4, 4.5, and 4.6 illustrate the effect of isotherms, isobars, and
isochores drawn on an energy surface. Note that discontinuities in energy
ocecur along isotherms in the energy-pressure plane (or along isobars in the
energy-temperature plane); for example, see figures L.5(b) and L4.6(b). The
magnitude of the energy jump is a measure of the heat of vaporization associ-
ated with the respective values of temperature and pressure noted. Analogous
discontinuities are not observed in the case of energy versus density
(fig. 4.L4) since the effect of work done in compressing the vapor to obtain a
liquid was accounted for in the caloric equation. One can use the abrupt
changes observed in slope values to mark the phase-change boundaries. In the
case of figure L4.5(a), the slope of the isochores (BU/BT)p is identified as
the constant-volume specific heat. Plots of specific heat are given in
reference 3 (pp. 47 and L8).
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(a) Isotherms computed on the basis of the analytical representation p,(T,0), equation (4.1) or (4.2).

Figure 4.1.— Pressure versus density.
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Figure 4.1.— Continued.
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Figure 4.1.— Concluded.
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Figure 4.2.— Pressure versus temperature.
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SUMMARY

Methods are developed for analysis of the thermodynamic states predicted
by a small-density-variation approximation of the fluid motion in a cryogenic
storage tank. Relations are derived for evaluating variations in pressure and
other thermodynamic quantities resulting from conduction and convection of
heat. Methods are developed for simulating the heater in an Apollo oxygen tank
in a manner compatible with the small-density-variation approximation of the
fluid motion. Correction procedures are specified to account for compressibil-
ity effects and to suppress nonphysical behavior introduced by the numerical
method used to determine the conduction and convection of heat.

INTRODUCTION

The integration procedure for evaluating the motion and temperature dis-
tribution of the fluid described in chapters 2 and 3 is based on several
approximations. Although pressure gradients must be considered in the momentum
equations, it can be shown that for the low-velocity cryogenic oxygen flows
under consideration, pressure gradients can be neglected in the energy equa-
tion. Similarly, the variations in pressure with time do not affect the motion
of the gas directly, but have only a cumulative effect in the energv equation.
The most important coupling between the momentum and energy equations is
through temperature gradients and convection of temperature variations. As a
result, for the purpose of finding the motion of the gas, the density can be
considered a function primarily of temperature, with pressure as a slowly vary-
ing parameter. If the temperature variations are sufficiently mild, the den-
sity and enthalpy can be approximated by the first several terms of series
expansions in temperature with coefficients that vary slowly in time due to
cumulative changes in pressure and temperature level.

In chapter 2 it is shown that to lowest order the flow egquations can be
cast in a form that is independent of pressure and density variations. The
associated. integration procedure described in chapter 3 requires as input a
mean density p and thermal expansion coefficient 8, each of which can be
time-dependent to allow for cumulative changes in pressure and density level.
A time-dependent temperature distribution results from this integration pro-
cedure. In this chapter, we indicate how this output can be used to determine
the attendant slowly varying pressure as well as other thermodvnamic variables
such as the density distribution and the potential pressure decay that would
result from adiabatic mixing. Methods for simulating the heater in an Apollo
oxygen tank are developed. Correction procedures are also developed to account
for compressibility effects and to counteract nonphysical behavior introduced
by the numerical method (ch. 3) used to compute evolutions of temperature.

So far as the thermodynamic state of the gas is concerned, pressure gradi-
ents are negligible at the low velocities that occur in a cryogenic oxygen
storage tank in a near zero gravitational environmment. The pressure can there-
for be considered uniform in the tank. The kinetic energy associated with the
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motion of the gas and the dissipation term in equation (2.97) are also negligi-
ble compared to changes in the internal energy of interest. Thus the problem
here is to evaluate the time-dependent thermodynamic state of a stationary
stratified gas from a knowledge of the time-dependent mean density and tempera-
ture distribution. The degree of rigor brought to bear is independent of the
means used to arrive at the input information on mean density and temperature
distribution. The methods developed for this purpose therefore would be applic-
able to the resulits from more accurate higher order or three-dimensional anal-
yses of the convection and conduction processes within the tank. Regarding the
rigor of the analysis, we have considered the problem at two levels. In pre-
liminary work, the van der Waals equations of state were used as described in
the next section. In subsequent sections, we include results based on the more
exact thermodynamic relations developed in chapter L.

APPROXIMATE PROCEDURE BASED ON VAN DER WAALS EQUATIONS

The problem at hand is to find the pressure and other thermodynamic quan-
tities when the mean density and temperature variation in the tank are known.
In this section, we describe the procedure used to obtain preliminary values of
these thermodynamic properties by an approximate method based on the van der
Waals equations of state. The mean density p is known in terms of the total
mass of oxygen M from the relation

p = M/VT (5.1)

where Vg is the tank volume. The rate of change of mean density is found by
differentiation

b _ 2/as (5.2)
T

vhere dM/dt is the rate of gas removal (typically O to 3 lbm/hr). Values of
p are computed at each time step from the relation

- = At (aM/at)
(P)pype = () + B (5.3)
using input values of dM/dt and Vi

At each time step the values of temperature T;i; at the computational
grid points (see fig. 3.1) are determined from the integration procedure. The
corresponding densities Py are computed to lowest order from the relation

p =pll - B8(T -~ T)] (5.4)

where T 1is the volume average of the temperature variation Tjk and
B8 = (—l/p)(Bp/BT)p is the coefficient of thermal expansion corresponding to
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the state p, T (see eq. (2.16)). The van der Waals equation for pressure is

- _BTp 2
P=7 %o " % (5.5)

Differentiation leads to the relation

- R(1 - bp)
B = RT - 2ap(1l - bp) (5.6)

for the coefficient of thermal expansion. In our preliminary resulis reported
at meetings of the Apollo Cryogenic Oxygen Tank Analysis Team at the NASA
Manned Spacecraft Center, a constant value of B was used that was evaluated

at the initial values of p and T.

Since a uniform spacing of computational grid points is employed in the
integration procedure, the volume average T can be computed according to the
relation

g Y- S, (5.7)

where Wiy 1is a weighting function (proportional to the volume associated with
each grid point) that is taken equal to 1.0 at interior points, 0.5 at boundary
points except in the corners, and 0.0 in the corners. The corners are excluded
(zero weight) because in the integration procedure described in chapter 3 tem-
peratures at the corners are not used and are not computed. The error intro-
duced by this omission is negligible for the 17 x 17 array of grid points used
in the calculations.

Substitution of the Tﬁk and pjk into equation (5.5) would lead %o pres-—
sures ©p;x that are not all equal as they should be. Since the pressure
should be uniform in the tank, it is expedient to evaluate an average pressure
according to the relation

(p + ap2)(1 - bp) = RTp

where the bar indicates a volume average of the same type as in equation (5.7).
Substitution of equation (5.4) into this relation, use of the fact that

(T - T) = 0, and omission of (T - T)3 terms found to be negligible in the cases
considered lead to the approximate expression

D = T?—Tﬁ—a- a(5)2 + [a(p)2(300 - i)fzbg Rpgl(T - T)2 (5.8)
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for the pressure in terms of average density, average temperature, and mean
squared deviation of the temperature from the average value. The latter quan-
tity is computed at each time step as in equation (5.7) according to the
relation

(5.9)

In addition to the pressure, the potential pressure decay (pressure decay
that would result from complete adisbatic mixing) is of interest. This quan-
tity provides a conservative estimate of the maximum drop in pressure that
could result from an abrupt spacecraft maneuver. This pressure drop could
result in the tank fluid becoming a two-phase mixture, an undesirable state
according to design criteria. The potential pressure decay that arises from
nonuniform heating under various operating conditions is thus an important
indication of the level of stratification of the fluid. In general, the pro-
cedure for evaluation of this quantity is as follows:

total mass M= EVT

total internal energy E = epVT

specific internal energy of collapsed state = E/M
resulting from complete adiabatic mixing col )

density of collapsed state Pool = p

temperature of collapsed state Tcol = T(ecol’ pcol)

collapse pressure Paol = P(Tcol’ pcol)

potential pressure decay (p - pcol)

where e 1is the specific internal energy at individual grid points and ep 1is
a volume average. The functions T(ecol’ pcol) and p(Tcol’ pcol) are to be

found by inversion of the equations of state for specific internal energy
U(T,p) and pressure p(T,p).

The above procedure for determination of the potential pressure decay can
be carried out using approximate equations of state or the more exact relations
given in chapter k. Our preliminary results were based on the van der Waals
equations of state, equation (5.5) and (ref. 1)

e=cy +c,/T - ap (5.10)

Substitution of equation (5.5) into (5.10) to eliminate T yields
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c

e=c1+§§—-(p+ap2)(l—bp)—ap

This relation can be used to evaluate ep and obtain an expression for egp1

in terms of p, p, (p2), and (p3) according to the foregoing general procedure
for finding the potential pressure decay. Direct substitution in the above
relation also yields an expression for egy1 1n terms of Doy and peyy = .
Equating the two expressions for e.o,; then leads to the formula

ab[o? - (5)3] - al1 - (R/c )1[p? - (5)?]
P = Pao1 ' 1 -bp

where p?2 and p3 indicate volume averages. Substitution of the first-order

density relation equation (5.4), rearrangement, and omission of (T - T)3
terms leads to the approximation

a(0)?[30p - 1 + (R/c )1g%(T - T)?
P-DPoop = T~ op (5.11)

which expresses the potential pressure decay in terms of the average density
and mean squared deviation of temperature from the average value.

The specific heat at constant pressure is needed in the integration pro-
cedure described in chapters 2 and 3. The van der Waals equations of state
(egs. (5.5) and (5.10)) can be used to derive the relation

R
o T %% T T - 2a0(1 - bp)2/RT (5.12)
In our preliminary results_a constant value of ¢, 1is used that is evaluated
at the initial values of p and T. The values of the constants R, b, a, and
cy used in the van der Waals equations were chosen such that the critical
pressure, temperature, and density are matched exactly according to relations
given by Hirschfelder, Curtiss, and Bird (ref. 1).

PROCEDURE BASED ON EXACT THERMODYNAMICS

In this section a more exact method is developed for finding the pressure
and other thermodynamic quantities when the mean density and temperature dis-
tribution in the tank are known. This method makes use of a temperature dis-
tribution function to save considerable computation time. A method for simu-
lating the heater in an Apollo oxygen tank also is described, and correction
procedures are developed to account for compressibility effects and to counter-
act nonphysical excursions of pressure introduced by the numerical method
(ch. 3) used to compute evolutions of the temperature distribution.
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Computation of Tank Pressure

When the mean density and temperature distribution are known, the uniform
pressure in the tank can be computed. For this purpose it was found expedient
to determine a temperature distribution function Fy of the type developed in
chapter 4 (after eq. (4.18)), rather than considering thermodynamic quantities
at each computational grid point. The procedure using a distribution function
and computation of thermodynamic quantities at temperatures Ty replaces com~
putation at grid temperatures Tﬁk' The advantage is that there ‘are many more
values of Tjk than of Ty, so many unnecessary repetitions of nearly identical
calculations are eliminated. The temperature distribution function F is a
function of temperature to be evaluated at a series of fixed, equally spaced
temperatures Ty with N =1, 2, 3, . . ., Npgx. The temperature dependence
of F 1is here indicated parametrically by expressing F as a function of N,
that is, Fy. The function Fy 1s defined to be a weighted number of computa~
tional grid points with temperatures between Ty - AT and Ty + AT where the
Ty constitute a fixed array of temperatures with uniform spacing equal to AT.
The weighting employed is proportional to the volume associated with each com-
putational grid point. Interior points are given a weight ij = 1.0, for
boundary points ij = 0.5, and the corner points are given zero weight since
their temperatures are not computed in the integration procedure. TFor each
value of J and k, W. is assigned to the two Fy between which its tempera~
ture lies in proportion to its proximity to each. That is, if
Ty < Tyx < Ty+1» Fy is increased by an amount Wiy (Tyye; - T3y )/AT, and Fyy,
is increased by an amount wjk(Tjk - TN)/AT. Thus the sum

max

ZFN
N=1

is equal to the total number of interior computational grid points plus half
the number of boundary points, not counting corners. The quantity Fy 1is
essentially equal to the total number of computational grid points with temper-
ature between Ty - (1/2)AT and Ty + (1/2)AT except for a small readjustment
corresponding to a linear interpolation. PFigure 5.1 shows an example of a tem-
perature distribution Fy plotted versus Ty. Additional examples and further
discussion of the meaning of this distribution function are given in chapter 6.

An array of temperatures Ty 1is associated with the temperature distribu-
tion function Fy. ©Since the pressure is uniform in the tank, at a given tank
pressure p, associated arrays of density py and internal energy ey can be
computed according to the relations

= (p,Ty) (5.13)
) (5.14)

Py

e

N U(TN

BpN
The computation of the function p(p,Ty) is described after equation (4.16) and
U(Ty.py) is given by (L.5). Since the TFy are proportional to the volume of
gas in the temperature range Ty - (1/2)AT to Ty + (1/2)AT the volume averages
p and pe can be computed according to
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Figure 5.1.— Typical temperature distribution function.

rate of gas removal daM/dt.

at the end of each time step.
in pressure Ap 1in each time step.

The values of Tsy
for the motion of the gas (see egs. (3.2d) and (2.95a)) are used to compute

I
p = (5.15)
max
F
=1 N
Nmax
_ NZI FPney
pe = _—ﬁf——__—___ (5-16)
If.ax
F
N=1 ¥

At the beginning of an integration
for the motion and temperature of the
fluid a tank pressure p and values of
temperature Tjk at the computational
grid points are specified. The distri-
bution function Fy is computed, and
the above relations are used to deter-
mine the initial values of p and pe.
In the subsequent integration the vari-
ation of p 1is computed from equation
(5.3) and depends on the specified
resulting from the integration

Fy

The problem then arises of computing the change
It should be recalled that pressure

p 1is

uniform in the tank. By differentiation it can be seen that changes in the Py
are related to changes in pressure according to
_ A
T
since the values of Ty are held fixed throughout the integration. Substitu-
tion of this in the relation
= + .
(o), = (ow), + Aoy (5.18)
ield
yilelds (pN)n + Ap
(ow) 4y = Op/a0) (5.19)
Ty
where the subscript n refers to the time step in the integration. Multipli-

cation of the last equation by (FN)n+1’ summation over N, and substitution of

Nmax

Lo (g, (ew)

N=1

Nmax

= Py o (my) (5.20)

+
N=1 n+1

107



yield N

§ax Nﬁax N§ax

p (Fy) = (Fy) .. (oy)  + AP (Fy) .. (3p/3p) (5.21)
o+l o N'n+1 No1 n+1 n No1 n+1 N

Since En+1 and (FN)n+1 are known at the end of the (n+l)th +time step, this

equation can be used to compute the change in pressure Ap associated with the
time step. Once Ap is known, equation (5.19) can be used to compute the

updated values of density (pN)n+1' As a check, o .. caf be computed using
equation (5.20) for comparison with the imposed value pn+1
Finally, the updated pressure i1s computed according to

P =p, *+Ap (5.22)

n+1

The structure of equation (5.21) is such that the value of p,,; computed
from equation (5.20) will always be driven toward the imposed value from equa-
tion (5.3) so that cumulative drifts cannot occur. This follows from the fact
that the first term on the right of equation (5.21) closely resembles the left
side of equation (5.20). Cumulative drifts of the individual (pN)n+1 computed

from equation (5.19) can take place, however. To avoid this, at every tenth
time step, the py are recomputed according to equation (5.13). It has been
found that the foregoing procedure is quite stable, and, for the sizes of time
step imposed by stability criteria of the integration procedure, it is quite
accurate with a 1° K spacing of the temperature elements Ty

Once the pressure is determined the potential pressure decay can be com-
puted by the procedure described in chapter 4 that utilizes the distribution
function Fy. As a check the potential pressure decay can also be computed by
the alternative method of chapter 4 for which the pressure p and temperatures

Temperature  Mean at computational grid points are uti-
Pressure 900 psio limits,  density,  ]igzed. Figure 5.2 shows a comparison

o -3
C « gem of potential pressure decays computed

a
Q
(@]

oo -0 -==0—=—=====—== O12010180 0640
by the two methods for a linear temper-
aofFF B - ---m - mm - B13010170 0666 jtyre distribution. The dashed lines
o A i iy ©14010160 0728 ingicate the potential pressure decay
300 for each case computed exactly by eval-

uation of the thermodynamic quantities
200 k- 4 at all computational grid points. The
symbols indicate wvalues of the poten-
tial pressure decay computed using the

8
T
>4

Computed potential pressure decay, psi

—Aﬁ—é—-—z ———————————— 14510 155 0748 distribution function TFy for various
44—~ - - ——7—=~1-~-71475101525 0752 values of the temperature array spacing
0 2 4 6 8 10 AT. It can be seen from the results in

Temperature array spacing AT, °K

figure 5.2 that the temperature array
Figure 5.2.— Effect of temperature array spacing on spacing AT = 1° K provides adequate
computed potential pressure decay. accuracy for all the cases considered.
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Method for Heater Simulation

An internal heater is used in the Apollo oxygen tanks to increase the
pressure when it falls below 865 psia 8ue to gas removal. In unpublished work
of C. K. Forester, D. D. Rule, and H. W. Patterson reported at meetings of the
Apollo Cryogenic Oxygen Tank Analysis Team, a segment of the wall was used to
simulate such a heater. It was found that the boundary-layer flow in the
neighborhood of the heater cannot be adequately resolved with a uniform grid
spacing when the acceleration field is of order 10~6 g or greater. Methods can
nevertheless be found that lead to physically reasonable and qualitatively cor-
rect results if attention is confined to energy conservation, and accurate
values of heater temperature are not required.

In this section, a method for simulating the heater by assigning selected
computational grid points as heater elements is described. When the heater is
on, the temperatures of the grid points assigned as heaters are increased by an
amount dependent on the heat capacity of the gas associated with each grid
point. The heat capacity depends on the volume of gas Vg associated with a
grid point, which is equal to the depth of the tank times the product of griad
point spacings in the x and y directions. Adjustments in heater temperatures
are made at the beginning and end of a time step in the integration for motion
and temperature of the fluid described in chapter 3. The energy balance will
be properly maintained if at the beginning of each time step the heater element
temperatures are increased by an amount ATy corresponding to a specified
heater power dQ/dt added to the total gas volume Vygp associated with the
heater element computational grid points; that is,

_ (dq/at)at

(5.23)
H pchHT

AT

before the integration step. The gas volume associated with each interior
computational grid point is

Vo AX Ay

T
YT T (5.24)
x"y

where Ax and Ay are the distances between grid points; the depth of the tank
is equal to VT/lxly; Vp  is the total tank volume; and zx,zy are the tank
dimensions.

If the heater element computaticnal grid points are interior points, the
total heater gas volume Vygp 1s equal to the number of heater elements times
Vg. But heater volume elements on the boundary are half the value given in
equation (5.24) since the boundary passes through the grid points. When the
heater elements are in the interior their temperatures will rise until a bal-
ance is reached between the temperature increase from equation (5.23) and the
decrease due to convection and conduction computed in the integration procedure
of chapter 3. When the heater elements are on the boundary, however, the inte-
gration procedure does not modify their values. In that case, it is necessary
to allow for a decrease in temperature at the end of each time step according
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to the amount of heat transferred to the interior grid points from the heater
elements. For a heater on a wall parallel to the y axis the appropriate
change in wall heater element temperatures is

2k(T.. - T, . )At
H
AT = - interior (5.25)

H c (Ax)2
P P

after the integration step. When the heater is turned off (dQ/dt = 0) the
increase ATy computed in equation (5.23) is zero. If the heater is on a
wall, the ATy computed in equation (5.25) corresponds to an insulated wall
boundary condition when the heater is off except for a small (physically cor-
rect) lag due to the heat capacity of the gas adjacent to the wall.

The same type of computation as that in equations (5.23) and (5.25) can be
used at all boundary points to simulate the heat leak from the exterior of the
tank. In that case dQ/dt in equation (5.23) is replaced by the heat leak
rate dQp/dt.

The power radiated from the heater can be allowed for by means of the
relation

a _ 4 _
dt ~ dt Qrad (5.26)

where dQ/dt 1is the specified input heater power and

Quggq = €0p(Tg - THA, (5.27)

rad

where € 1is the emissivity (typically 0.32), 0, the Stefan-Boltzmann constant,
and Apg the heater area. According to reference 2, less than 10 percent of
the radiated power is absorbed in the oxygen (usually much less depending on
the heater temperature). Therefore, most of the radiation is absorbed in the
tank wall, and Qrad should be added to the heat rate dQL/dt. That is,
radiation from the heater is absorbed in the wall and heats the fluid adjacent
to the wall by conduction in the same manner as heat leaking to the interior of
the insulated wall from the warmer outer wall of the tank.

CORRECTION FOR SPURIOUS INTERNAL SOURCES

The integration method for the motion and temperature of the fluid
described in chapter 3 utilizes the so-called "conservative form" of the con-
vective terms. The method is not strictly conservative in the sense of ref-
erence 3, although it may provide more accurate treatment of convection effects.
Also the treatment of heater and wall computational grid points described in
the preceding section is not strictly conservative. For that reason small
spurious internal sources may lead to erroneous cumulative computed pressure
variations. To avoid this the method can be made conservative overall by
applying a correction to the temperatures Tjk at the end of each time step.
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For that purpose integration of the energy equation over the tank volume, use
of Gauss' theorem, and rearrangement lead to the expression

ol
a& _ %9 a
at = dat + hO dt (5'28)
where
E = EEVT total internal energy (5.29)
h, = hip,T) specific enthalpy of

fluid at the exit orifice

Br_ s, B

3 = & T 3t total power input (5.30)
aM rate of fluid removal
at (negative for outflow)

If a strictly conservative numerical method were used to integrate the exact

conservation relations, equation (5.28) would be satisfied. A procedure for

imposing equation (5.28) is developed in a later section. First, however, it
is worthwhile to consider the corresponding energy conservation relation that
applies to the approximate energy equation derived in chapter 2.

Integration over the tank volume, application of Gauss' theorem to the
energy equation derived in chapter 2, and use of M = pVp Ilead to the
expression

=y dM
o ~ cpT) at

If a strictly conservative numerical method were used to integrate the equa-
tions of chapter 2, the above equation would be satisfied. Conversely, overall
energy conservation will result if this relation is imposed at the end of each
time step by a uniform readjustment of the temperatures Tjk at the computa-
tional grid points. A uniform readjustment is chosen because we have no infor-
mation on the spatial location of the error. For this purpose hg can be
taken equal to cpT and

(5.31)

- 4

p dt -

Setting h, equal to T has the effect of removing the dM/dt term from
equation (5.31). The meaning of this choice is that we take the enthalpy at

the exit orifice to be equal to the average specific enthalpy in the tank

rather than attempting to specify an exact location of the exit orifice. Impos-
ition of this relation at the end of each time step ensures comservation of
energy and removes pressure excursions resulting from small but cumulative
spurious internal energy sources arising from the nonconservative numerical
method described in chapter 3. A dimensionless temperature H i1s defined in
equation (2.95a) and ij is evaluated at the computational grid points in the
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numerical integration procedure of chapter 3 (eq. (3.2d)). The temperatures
Tsx at the computational grid points are related to the dimensionless tempera-
tures ij by the relation

Tie = T * Taseflse (5.32)

where Tp 1s a reference temperature that can be time dependent and Tg;p is
an arbitrary constant temperature difference. The uniform readjustment of the
Ts at each time step can be effected by a change in the reference temperature
Tr rather than modifying all elements of the computational matrix Hj jk- For
that purpose the volume average of equation (5.32)

T = T, + i (5.33)

Td f
is needed. At the end of each time step the volume average H is computed to
determine the necessary correction of TR. Integration of equation (5.31) over
one time step yields

Substitution of equation (5.33) leads to the relation

S (TR), + Ty (R, - F ) =

M
(TR) dif' n+1 n Me 4t

n+1

from which it follows that the required correction ATy = (TR)n+1 - (TR)_ is

Correction to Account for Mean-Density Variations

Additional nonphysical cumulative excursions of pressure can result from
the use of approximate thermodynamics in the integration procedure for deter-
mination of the motion and temperature of the fluid. If an exact compressible
conservative method were used, equation (5.28) would be satisfied. Conversely,
imposition of equation (5.28) by readjustment of d@p/dt will result in an
overall energy balance and will restore the correct pressure variation with
time. If this were done at every time step, the correction for spurious inter-
nal sources (eq. (5.34)) would be superfluous since it would be overridden.
However, the computing time required for evaluating the necessary thermodynamic
functions in their present form (described in ch. 4) is not negligible. Since
the correction to account for compressibility effects 1s relatively small for
short time periods, computing time can be saved by imposing it only at every
tenth time step. In that case, since the computing time required for imposing
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the correction for spurious internal sources at every time step is negligible,
both corrections are worthwhile.

Substitution of equation (5.29) into (5.28) and integration over one time

step yield
d
— — 1 (%% a
(0o) g = o)y = 3 < at * o d;> At

This relation may not be satisfied if a nonconservative numerical method is
used. It will be satisfied if a correction power dQc/dt is added to the
total input power dQp/dt such that

dq

C

v a
T, — _ QT aM
Tt = Aot Pe)pey - (Pe) ]l - % -

hy 6 (5.35)

It is convenient to add this small correction to the wall heat leak power
dQr/dt discussed after equation (5.25). Thus heat is added (or subtracted) at
the tank walls to allow for the difference between accurate thermodynamics and
the approximate thermodynamics used in the integration procedure. Physically
realistic pressure variations will result for cases in which the convection and
conduction processes within the tank are adequately approximated by the two-

dimensional integration procedure for a square tank described in chapters 2 and
3.

Method for Including Effects of Tank Stretch and
Variable Transport Properties

Since the Apollo oxygen tanks are thin-walled pressure vessels, the tank
volume depends on the pressure according to the relation

1 dVT
iy =y (14 o - poﬂ (5.36)
To i
where V., and p are the initial volume and pressure, respectively. Accord-
To o
ing to relations given in unpublished work of C. K. Forester, dVT/dp can be

considered constant and is given by

3r(1 - o)V
T To
ap = 2.8, (5.37)

av

where
r/by ratio of spherical tank radius to wall thickness

c Poisson's ratio for tank wall material

113



VT initial tank wvolume
o

E Young's modulus for tank wall material

The changes in tank volume due to changes in pressure are small, but they can
have a large effect on the rate of pressure rise due to heating and on the
potential pressure decay. To account for such effects it 1s necessary to
replace equation (5.28) with

a_ B a T
at at oat ~ P Tat

which is a form of the first law of thermodynamics. This relation is applic-
able to the entire volume of stratified fluid because pressure gradients are
negligible. Differentiation of equation (5.36) with Vp o, dVT/dp, and p_ held
constant, and substitution in the last relation yield © °

ag _ B, a1 roap?
&t - dat  fodt 2 dp dt

Integration of this equation leads to the expression
dQT dﬁ) 1 dVT

- t( T aM _ 1 2 _ .2
E - Eo + fo< dt + hO dt dt 2 dp (P Po) (5-38)

for the total internal energy in the tank,

To ensure conservation of energy in each time step a procedure similar to
that leading to equation (5.21) can be applied to the relation

= dpe
(oyey)pey = logey)y + 00 ( 8P>T

to obtain

anlax NIfaX Nmax -3 e
(pe) F_ = F (pyey) + Ap ) (—Q->
o+l L TN L T PNNn Ne, N\ oo Ty

where F is evaluated at n+l. Since ope = E/VT, substitution of equations
(5.36) and (5.38) into the last relation yields
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t aq,, av Nmax
n+1 (T am 1_T 2 2
{%o * fo < a T B d;> at - 3 g (e, + &p)% - o] NZI x

av,
1 T
—— ———— + —
Vo[} * Vip dp (pn bp poi
o]

IEI:].B.X Iilax _Z_)_Le )
= F (pqey) + Ap F ( > (5.39
nop  NPEONn xe; N\ep Ty

Similarly, use of o = M/Vqp and substitution of equation (5.36) into equation
(5.21) yield

max
Mn+1 NZI FN Nmax Nmax 3
N = Z F {p.) + Ap Z o 2L (5.40)
dv N'"N'n & N\ op
Vo |1 + =2 —Z (p 4ap-p )| V=!I N=1 Ty
Ts VTO dp L o

In this derivation Fy is evaluated at the (n+l)st integration step. If
equations (5.39) and (5.40) are satisfied at each time step, overall conserva-
tion of energy and mass 1s assured. At the end of an integration step all
quantities appearing in these equations are known except Ap and ATg, the
change in reference temperature imposed by the effect of tank stretch on the
total energy. Note that equations (5.39) and (5.40) can be solved for Ap and
ATR at each time step so that energy and mass are conserved.

The temperatures Tjk at the computational grid points are related to the
dimensionless temperatures H:), computed in the integration procedure of chap-
ter 3 by equation (5.32). Su%stitution of that equation into the expression
for the distribution function Fy, equation (5.28) of chapter U4 yields

5
ro= 7 oW Tasefx VTR~ Ty 5 Taielye * Tg = (Ty - A7)
N~ JeiT T AT AT

3.k

_S[%diijk + T - (T + AT?J

AT
The Wy, are constant weighting values discussed previously. The Ty are an
array of fixed temperatures with uniform spacing AT and Tg;¢ 1s an arbitrary
temperature difference. At the end of an integration step according to the
method of chapter 3, the dimensionless temperatures ij are known. There-
fore, all quantities needed to compute ¥y for use in equations (5.39) and
(5.40) are known except the reference temperature Ti. However, Ty is known
at the previous time step. Therefore, Fy 1s evaluated by means of the
relation
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{Fyl(TR)  + aT] - F[(TR) 1}

Fp = Fyl(Tr) 1 + aTg T (5.41)

where AT is the spacing between the Ty, that is, AT = TN+l - TN. Substitut-

ing equation (5.41) into (5.39) and (5.40) yields a pair of equations too
lengthy to be written out conveniently. However, the important point is that
the resulting equations can be solved (by iteration) for Ap and ATy at each
time step. In this procedure no additional corrections for spurious internal
sources or changes in mean density are required since energy and mass are
already conserved. The structure of the relations in this section is such that

the computed values of p and EE are automatically driven toward the correct
values and significant drifts do not occur.

At the end of each time step, and also at the start of the calculation,
when p and Tz are known a number of quantities needed for calculation at the
next time step are evaluated at the fixed temperatures Ty and pressure p.
Each element of the fixed double arrays

oy = P (PypoTyp) (5.42)

i

e U(pyTy) (5.43)

M

used in these evaluations is computed and stored during the calculation the
first time it is needed, using the thermodynamic relations of chapter L. The
stored values are used, if they have been previously computed, to minimize the
computing time. It has been determined that a uniform spacing of 10 psi
between the py and 1° K spacing between the Ty ©provide adequate accuracy.

The densities oy and derivatives (9p/d3p)p_ and (9pe/dp)p  are
evaluated according to N N

P-D P -p
M M+1
Py "\o - /)Pu+1,8 T o . - o [Pv (5.44)
\ -
<§E) e (5.45)
p T Pu+1 ~ Pm

/Bgeﬁ - (pM+1,NeM+1,N - Py (5.46)
K g Ty (Pyeer = Py

where M is chosen such that py =D < Dyyq- Additional derivatives needed in
the calculation are

Y - P
(§E> S Seeer (5.47)

oT D T+l TN
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e - e
P N+1 N

Again M 1is chosen such that pM £ P < Pyy1 and these derivatives are evalu-
ated at all N so that the quantities

[(3p/3T).. ]
8y = IR itels s (5.19)
Py
[(3e/3T), 14 + ByP
(c.) = P N (5.50)
PN DN

can be computed and stored for all N. Arrays vy (kinematic viscosity) and
ky (thermal conductivity) are also computed and stored at the end of each time
step for use in the next integration step. The relations used are

vy = v(pN, TN) (5.51)

ky = k(pN, TN) (5.52)

where the functions Vv(p,T) and k(p,T) are evaluated according to an unpub-
lished recommendation of H. M. Roder. Equations (5.49) through (5.52) indicate
the evaluations used to impose variable coefficients in the equations of chap-

ter 2. The value of N used at each computational grid point is chosen such
that T, < T, <T

N jk N+1'
The tank stretch effect also modifies the relations for potential pressure

decay listed after equation (5.9). The total mass of the collapsed state is
unaffected, but the total energy and volume are given by

= 14V, - 2
Bo1 8t 25 (p? - pg 1) (5.53)
_ 1 av
Veol = Vo[} * V. dp (Pcol - POE} (5.5L)
Then
Peo1r = WV (5.55)
€co1 T Ecol/(pcolvcol) (5.56)
The equations of state
Poor = PPogys Toor’ (5.57)
€eo1 U(Tcol’ pcol) (5.58)
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are also needed. Iterative solution of these relations is required to find
the collapse pressure Peol”

At the beginning of an integration for the motion and temperature distri-
bution of the fluid the initial pressure Py tank quantity, and dimensionless
temperature distribution H. are specified. The tank quantity is defined to
be the ratio of fluid mass in the tank to the fluid mass when the tank is full.
Thus, the mass of oxygen in the tank is computed according to

M= Mfu x Quantity (5.59)

11
Then

o = M/vO (5.60)

The distribution function Fy is a function of Tg; see the discussion follow-
ing equation (5.40). Therefore, the relations

N§ax N§ax :
o F_ = F 0 (5.62)
N=1 N N=1 NN

can be solved for Ty by iteration. Once TR 1is known
Nmax

Lo Txfy
e =L (5.63)

Nmax

Y Py
and N=1

E = EEVTO (5.64)

can be evaluated.

Suppression of Nonphysical Excursions of Temperature and Vorticity

At an early stage in this investigation it was noted that the numerical
integration method described in chapter 3 results in small excursions of tem-
perature outside the range of values imposed in the boundary conditions. This
probably occurs because of the use of a coarse grid that does not adequately
resolve the heater boundary layer. We have described methods for ensuring
overall conservation of mass and energy. An additional remedy has been adopted
to suppress nonphysical excursions of temperature.

In simulating a heater, heater temperatures are computed at the beginning
of an integration for each time step. Similarly, wall temperatures are
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computed to account for heater radiation sbsorbed by the walls and heat leak
through the. walls.. After these computations the highest and lowest tempera-
tures. in the entire temperature matrix are found. These limits are then
imposed on the entire temperature métrix gt the end of each integration step
since they are valid physical limits.

A similar type of nonphysical behavior can occur in the computation of
vorticity due to the failure of the coarse grid to resolve boundary layers.
Therefore, upper and lower limits were imposed on the vorticity matrix at the
end of each time step in the same manner as for the temperature. When this was
not. done, much larger values of vorticity occurred at the boundaries and pro-
duced oscillations in the flow unless the time step was decreased. Imposition
of vorticity limits stabilized the flow and allowed long computations to be
made. Fixed limits of plus or minus four times the magnitude of the uniform
vorticity corresponding to a rotation reversal starting at three revolutions
rer hour were imposed. These limits were chosen because they are beyond the
extreme values observed at interior points in the flow for the cases investi-
gated. There is no physical Justification for vorticity limits as there is for
temperature limits. There is a physical interpretation of the effect, however.
Disturbances that extend over several computational grid points can be computed
correctly, but small-scale disturbances that cannot be computed correctly with
a coarse grid in any case are filtered out. The flow in thin boundary lavers
and near the corners of the rectangular enclosure will not be computed cor-
rectly. However, the mixing action that occurs in the main body of the fluid
for times up to several hours can be computed and should provide a conservative
estimate of the mixing that would take place in a spherical tank without
corners. :

Effect of Changes in Parameters
Chapter 6 presents results from a series of calculations based on the

methods of this and the preceding chapters. A 17 x 17 computational grid was
used in those calculations as well

60— No tank stretch .

sl 7 N 20 10 as fixed values of several other
2 ook 4 b _p parameters. It is of interest to
< 0 < ! 1 ! 1 i J consider the effect of changing the
124 .
2 60 7/ ~7ero rotation rate total number of mesh points and
¢ 40t 4 7. __Nonzero velocity other parameters.
2 20 4 =477 - at heater
o0 — P—
o L —~—T Large heater volume . .
& o == L ! I [ Figure 5.3 contains plots of
2 60 #c—33 %X 33 matrix potential pressure decay versus time
= - . - .
2 40 ; _Quantity 80% during heater cycling. In all of
o e——2 °

20 2T quontity 70% the calculations represented the

|

heater is turned on when the pres-
sure falls below 870 psia due to gas
removal and the heater is turned off
when the pressure rises above 910
psia. A flow rate of 1.5 lbm/hr, a

20 40 60 80 100 120 140 160
Time, min

@]

Figure 5.3.— Effect of changes in parameters (in all
cases, flow rate = 1.5 lbm/hr, heat leak = 10 W, heater

power = 115 W, rotation rate = 0.4 rph except where
noted, quantity = 90 percent except where noted).

heat leak rate of 10 watts,.and a
heater power of 115 watts were
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imposed in all of the calculations. A steady spacecraft rotation rate of 0.k
revolutions per hour was used, except where noted, and the tank quantity
(required in eq. (5.59)) was 90 percent except for two cases at 80 and TO per-
cent. The quantity decreases by about 1 percent in 2 hr when the mass-flow
rate is 1.5 lbm/hr.

The potential pressure decay rises when the heater is on and subsides. when
the heater is off, but there is a cumulative increase as the level of tempera-
ture stratification increases. It can be seen in figure 5.3 that the heater is
turned on and off a number of times in each of the calculations shown. The
positions of the fourth, seventh, and tenth peaks are labeled in the figure as
an indication of the effect of changes in parameters on the rate of pressure
rise. Since the pressure fluctuates linearly between 870 and 910 psia in all
cases, the time required for 10 peaks in the potential pressure decay is
inversely proportional to the rate of pressure rise. This is illustrated in
sketch (a), which shows pressure and potential pressure decay versus time for
two heating cycles. Note that the rate
of pressure rise due to heating is
reduced by the tank stretch effect.

The amount of the reduction is
Pressure L PR inversely proportional to the ratio of
7 N SNl times required to complete a given num-
ber of cycles. Calculations with and
without the tank stretch effect are
Pofential compared in the plot at the top of fig-
Dﬁise \\»,n~ < ure 5.3. The ratio of times required
S = to reach the tenth peak indicates that
the tank stretch effect decreases the
rate of pressure rise by a factor of
Sketch (a) 1.225 relative to the rate of rise for
a rigid container. In unpublished work
of the Propulsion and Power Division,
NASA Manned Spacecraft Center, results
were obtained showing that with uniform heating at 90 percent quantity the cor-
responding ratio of rise rates is 1.563. Thus, we find the tank stretch cor-
rection to be smaller for nonuniform stratified heating than it is for uniform
heating. It can also be seen in the plots at the top of figure 5.3 that the
tank stretch effect tends to suppress the cumulative rise in potential pressure
decay but does not counteract it completely. Additional information on this
point -is supplied by comparison of potential pressure decays with and without
tank stretch for an assumed linear temperature distribution across the tank.
In a representative calculation at 90 percent quantity with a temperature
spread of 20° K, the values of potential pressure decay computed were 135 psi
with tank stretch and 208 psi for a rigid container. Thus, tank stretch
becomes more effective at higher levels of stratification in counteracting the
buildup of potential pressure decay that would be present in a rigid container.

No tank stretch

Time

Effects of changes in other parameters can be noted in figure 5.3. Rota-
tion rate refers to the steady rate of rotation of the spacecraft used in the
calculation. TIn each case, the calculation was started with a uniform tempera-
ture and with the fluid at rest relative to the rotating tank. 1In all calcula-
tions the heater was located at an off-center position described more
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completely in chapter 6 (fig. 6.10). Five computational grid points forming

a + were used as heater elements. At the end of each time step in the. integra-
tion, the stream function at these five points was set equal to the average of
the values computed at the five points by the numerical method of chapter 3.
This was done for the purpose of imposing zero velocity at the center of the
heater. '"Nonzero velocity at heater" in figure 5.3 refers to a calculation in
which the stream function was not readjusted at heater elements. "Large heater
volume" indicates a calculation in which 13 points were used as heater elements
rather than five points. It can be seen in figure 5.3 that use of 13 points
decreased the computed potential pressure decay by only a factor of about two.
Most of the calculations in this report were computed using 17 x 17 uniformly
spaced matrix points. In figure 5.3 results are given for a 33 x 33 matrix
that are to be compared with the standard calculation represented by the solid
curve in the top plot. PFor tank quantities less than 90 percent the rate of
pressure rise and the cumulative rise in potential pressure decay are smaller
as shown in the plots at the bottom of figure 5.3.
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6. RESULTS FROM NUMERICAL COMPUTATIONS SIMULATING

FLOWS IN AN APOLLO OXYGEN TANK
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SUMMARY

The effectiveness of vehicle maneuvering as a means for producing neces-—
sary mixing in the Apollo oxygen tanks is investigated. Results are presented
from numerical simulation of flow in the tanks showing the effect of reversal
of rotation after a prolonged period of rotation at a constant rate. Results
are given from calculations corresponding to spin up of the vehicle after a
prolonged period at zero rotation rate and near-zero acceleration. Both maneu-
vers lead to a reduction in potential pressure decay by a factor of 2 or more.
Photographs of a cathode ray display tube are presented illustrating the con-
vection currents and cumulative buildup of potential pressure decay that result
from intermittent operation of the heater.

INTRODUCTION

In this chapter, results are presented from a series of calculations uti-
lizing the methods developed in preceding chapters. Preliminary results based
on the van der VWaals equations of state were presented at meetings on the
Apollo oxygen system held at the Manned Spacecraft Center prior to the Apollo
1k flight.

Following the failure of an oxygen tank during the Apollo 13 flight and
the subsequent diagnosis of the cause, intensive efforts in the areas of
design, development, analysis, and testing were conducted to assure the timely
redesign of the Apollo cryogenic oxygen storage and supply system. After the
Apollo 1b flight a symposium was organized at the NASA Manned Spacecraft Center
for the purpose of disseminating the information acquired. Seventeen papers
were presented under five categories: hardware development, stratification
analyses, system models, test programs, and flight performance. The papers
were collected in an unpublished document, MSC Cryogenics Symposium Papers.

The relationship of the present investigation to the overall effort is outlined
in chapter 1.

The recommendation of the Apollo 13 Review Board that the mixing fans be
removed from the oxygen tanks was adopted. This decision and the subsequent
redesign studies were aided by data acquired from the Apollo 12 flight during
which the fans were not used for an appreciable part of the flight. Analysis
of that data was reported in unpublished work of C. XK. Forester, D. D. Rule,
and H. W. Patterson. Of particular interest was a period from 4t to 8 hr after
the launch during which the fans were not operated. During most of this time
very little spacecraft maneuvering occurred, and the effective acceleration
field was of order 10~/ earth gravity. It was found that a number of pressure
decays took place that were correlated with accelerations due to maneuvering,
which caused spikes of acceleration of order 104 g lasting for several
seconds. After a prolonged period of low acceleration a pressure decay of 140
psi was observed at the time of an acceleration spike that reached a level of
10-3 g. A stratification analysis based on a two-dimensional square-tank simu-
lation reproduced these effects reasonably well.
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The analyses of Apollo 12 data indicated that no serious stratification
problems were to be expected from operation of the oxygen tanks with the mixing
fans removed. It was concluded that normal vehicle maneuvering could be relied
on to produce the necessary mixing. Nevertheless, several investigations. were
made of emergency procedures that could be used if the performance fell below
an acceptable level. The question was reised whether reversal of the rotation
rate starting at three revolutions per hour (rph) would provide useful mixing
action in the oxygen tanks. An analysis of the stratification using a two-
dimensional model for this problem is difficult because prolonged motion of the
fluid leads to the requirement of a small time step to achieve stability in the
numerical method. Therefore, approximate methods were used initially to reduce
the required computing time. From our preliminary results based on the van der
Waals equations it was concluded that spacecraft rotation reversals would
indeed provide effective backup means for mixing the oxygen if normally occur-
ring maneuvers proved to be insufficient. That conclusion is of continuing
interest for future Apollo flights in which vehicle maneuvering is relied on to
produce the necessary mixing in the oxygen tanks.

In this chapter we present results based on the accurate thermodynamic
relations developed in chapter 4. The effects of tank stretch analyzed in
chapter 5 are accounted for. The equations for the fluid motion and convection
of heat used in the analysis are derived in chapter 2. The numerical method
employed in the integration of the fluid mechanical equations is described in
chapter 3. Special methods for suppressing cumulative errors that were used in
the calculations are described in chapter 5. Our preliminary conclusions on
the mixing effectiveness of rotational spacecraft maneuvers are verified and
put on a firmer basis by the results in this chapter. The effects of changes
in the rate of spacecraft rotation on additional types of stratification are
investigated. Calculations showing the buildup of potential pressure decay
(the pressure decay that would result from complete adiabatic mixing) during
heater cycling are presented.

MIXING EFFECTIVENESS OF ROTATION REVERSAL

Calculations were made in which the vehicle was taken to be rotating ini-
tially at 3 rph. A series of initial stratified states were imposed with the
temperature varying linearly across the tank. The hot fluid was placed in the
stable position toward the center of rotation, which was outside the tank.

Such stratification can be expected to develop after many heater cycles while
operating with a steady vehicle rotation rate. In the absence of other wvehicle
maneuvering and with the heater turned off, the calculations show a very slow
decrease in potential pressure decay and no motion of the fluid relative to the
tank. The decrease in potential pressure decay in this case is due to conduc-
tion arising from the mild temperature gradient. When the direction of rota-
tion is abruptly reversed, however, a swirling motion of the fluid ensues,
leading to mixing and enhanced temperature gradients. Figure 6.1 depicts the
velocity field in the flow that results. It comprises photographs of a cathode
ray display tube on which were plotted the velocity vectors at the computa-
tional grid points. Sketch (a) shows the dimensions and orientation of the
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Figure 6.1.— Velocity vectors after rotation reversal. Sketch (a)

two-dimensional square-tank model. As indicated, the tank rotates counter-
clockwise in the plane of the page about a center located at the center of the
spacecraft. However, in the calculations a coordinate system is used that is
fixed with respect to the tank and the center of rotation remains fixed at a
position 1.5 tank diameters below the center of the tank. In all the photo-
graphs of figure 6.1 and later figures, the center of rotation is thus below
the tank as indicated in the sketch. The arrow on the right in the photographs
represents the position of a fixed star, such as the sun, with respect to the
rotating tank. Thus when the rotation rate is steady, the arrow provides an
indication of the passage of time. This feature was useful in viewing the
cathode ray tube during calculations or in motion pictures of the displays.

The upper left photograph in figure 6.1 shows the fluid velocity vectors in the
tank immediately after rotation reversal. The magnitude of the velocity near
the tank boundaries is about 0.02 ft sec™!. The clockwise swirling motion
shown results in part from the rotational inertia of the fluid, which tends to
retain the motion it possessed before the rotation reversal of the wvehicle. A
lateral acceleration, present during the reversal, acts differentially on the
stratified layers resulting in a significant contribution to the swirling
motion. The other photographs in figure 6.1 show the velocity vectors at later
times. The off-center swirl develops as a result of the stratification present
and moves continuously in the clockwise direction, which is also the direction
of motion of the fluid.

The graph at the bottom of each photograph in figure 6.1 is a plot of the
potential pressure decay versus time from the beginning of the calculation.
The scale is automatically decreased when the plot becomes overextended. In
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the lower right photograph the time scale has been decreased by a factor of 2
relative to that in the other photographs.

Figure 6.2 shows the evolution of temperature distribution in the tank.
For temperatures greater than the average, the deviations from the mean temper-
ature are represented by vertical lines. As an aid to visualization, for tem-
peratures less than average the deviations from the mean are shown as horizon-
tal lines. In either case, the length of the lines indicates the relative
magnitude of the temperature deviation from the mean at each computational grid
point. The upper left photograph in figure 6.2 shows the initial assumed
linear temperature distribution. The hot gas is toward the center of rotation.
The remaining photographs show temperature distributions at later times after
mixing has resulted from the swirling motion.

In figure 6.3 thermal stratification is viewed differently. The tempera-
ture distribution function described in chapter 4 (following eq. (L4.24)) and in
chapter 5 (preceding eq. (5.13)) is displayed in the form of histograms that
indicate the number of computational grid points with temperatures within 1° K
intervals. The unfilled histogram represents the initial linear temperature
distribution. Gaps appear between the bars due to the discretization used in
the numerical method. That is, every other 1° K interval did not happen to
contain temperatures occurring at the computational grid points in the imposed
linear temperature variation across the tank. The bars at 130° and 170° K are
half the size of the others because the computational grid points at the tank
boundaries are given half the weight of interior points, which represent twice
as much fluid volume. During a calculation the temperatures change due to con-
vection and conduction of heat. The heights of the bars change and the gaps
are filled in. The shaded histogram in figure 6.3 shows the temperature distri-
bution 40 min after a rotation reversal maneuver when considerable mixing has
taken place and the steep temperature gradients that developed have reduced the
temperature deviations from the average. If complete mixing were to take
place, the temperatures at all computational grid points would fall within the
same 1° K interval and the histogram would become a single bar at that tempera-
ture. As a supplement to the potential pressure decay, histograms of this type
provide additional quantitative information on the stratification present in
the tank.

In a preliminary unpublished paper we have shown that under certain condi-
tions the decrease in potential pressure decay due to a rotation reversal
according to a calculation based on the van der Waals equations is in rough
agreement with results based on more exact thermodynamic relations. However,
such agreement is not obtained in all cases of interest, as illustrated by a
comparison of figures 6.4 and 6.5. Figure 6.4 shows plots of potential pres-
sure decay versus the magnitude of linear temperature variations for several
tank pressures according to the van der Waals equations. Figure 6.5 shows
results for the same conditions based on the accurate thermodynamic relations
of Stewart as described in chapter 4. It is easily seen that the van der Waals
results disagree grossly with those based on Stewart's equations at both low
and high levels of stratification. Our preliminary conclusions on the mixing
effectiveness of a spacecraft rotation reversal although qualitatively correct
are put on a firmer basis by the calculations utilizing accurate thermodynamics
in this chapter.
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The sharp bends in the curves contained in figure 6.5 are of interest.
The flattening out takes place when g level of stratification is reached for
which the collapsed state that would result from complete adiabatic mixing con-
tains a two-phase mixture of liquid and vapor. Many other interesting aspects
of the behavior of cryogenic oxygen are illustrated in the thermodynamic prop-

erty plots presented in chapter k.
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Figure 6.6.— Potential pressure decay after rotation reversal.
equation (3.28) can be written

U| At
Ax
is the maximum speed present in the

Q =

where IU]

Figure 6.6 shows plots of
potential pressure decay versus
time after rotation reversal
for four initial levels of
stratification. The starting
values of potential pressure
decay in these plots can be
obtained from figure 6.5.
Decreases in potential pressure
decay by a factor of about 2 or
more result from a change in
rate of spacecraft rotation
from 3 rph to -3 rph.

The Courant number gpplic-
able to the numerical integra-
tion procedure used in the
present calculations given in

(6.1)
flow, At the time step, and

Ax the spacing between computational grid points in both x and y directions.
As discussed in chapter 3, the Courant number is a measure of the stability and
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accuracy of the numerical integration procedure. Most of the calculations in
this report were made with a value of o = 0.8. Case I of figure 6.6 was also
computed with a = 0.4 (and smaller time steps according to eq. (6.1)) as indi-
cated by the dotted line. Comparison of the dotted and solid line curves for
case I in figure 6.6 shows that the predicted variation of potential pressure
decay with time is insensitive to such a change in the Courant number. Appre-
ciable wvariations in the flow variables extend over several computational grid
points except in the boundary layer at the wall, which remains relatively thin
during computation times considered here. Therefore, changes in the boundary
layer do not significantly affect the evolution of the potential pressure
decay, which depends on conditions in the main bulk of the fluid, in the rota-
tion reversal problem. For this reason, the results are insensitive to a
change in grid spacing from a 17 x 17 matrix to a 33 x 33 matrix. To save com-
puting time, the latter computations were also made with a Courant number

a = 0.8.

MIXING EFFECTIVENESS OF SPINUP AFTER ATTITUDE HOLD

In the previous section, initial stratified states were considered that
could be expected to result after many heater cycles with the spacecraft rotat-
ing at a steady rate (the so-called "passive thermal control mode"). Another
case of interest is the type of stratification that would result after many
heater cycles in a nonrotating state (attitude hold mode). In the absence of
vehicle maneuvering, no convection currents would develop and the heat from the
heater can spread into the gas only by conducticn. A localized hot spot around
the heater somewhat diffused by conduction and essentially zero fluid velocity
are to be expected in this case. It is of interest to determine the mixing
effectiveness of a spinup to a steady rotating state from such an initial strat-
ified state. 1In the coordinate system fixed with respect to the tank, changes
in rotation rate cause a rotating motion of the fluid. The velocity field that
occurs as a result of spinup is similar to that shown in figure 6.1. TWigure
6.7 illustrates the effect of spinup on the temperature distribution. It
should be recalled that positive temperature deviations (from the mean tempera-
ture) are shown as vertical line segments and negative deviations are shown as
horizontal line segments. The upper left photograph shows the initial assumed
distribution. Subsequent distortions and dissipation resulting from the
swirling motion are shown in the remaining photographs.

Figure 6.8 is a plot of potential pressure decay versus time after spinup.
For comparison, a plot is included showing the very slow decrease in potential
pressure decay that occurs as a result of conduction when the attitude hold

condition is maintained. Again it is found that a change in vehicle rotation
rate provides effective mixing action.

HEATER CYCLE

A pressure sensor is installed in the Apollo oxygen tanks and is used to
automatically turn the heater on when the pressure drops below a lower limit of
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about 870 psia as a result of gas removal or pressure decay due to mixing. The
heater is automatically turned off when the pressure rises above an upper limit
of about 930 psia due to heating. As discussed in chapter 5 our machine pro-
gram contains options for simulating the heater in either of two ways. One
method utilizes a segment of the tank wall as g heater. In the other method,
selected internal computational grid points can be utilized as heater elements
to more nearly correspond to the actual position of the heater in an Apollo

oxygen tank.

The photographs of figure 6.9 show the velocity and temperature distribu-
tions produced by cyclic operation of the two types of heater. The plots at
the bottom of each photograph show the variations in potential pressure decay
that have taken place since the beginnings of the calculations. When the
heater is on, the potential pressure decay rises, and when the heater is off,
it subsides, but there is a cumulative increase. About 2 hr {(real time) have
elapsed since the start of the calculation at the time of the photographs.
During that time about six heater cycles have been completed. Additional
information on the parameters of the calculations is given in the discussion of
subsequent figures.

The upper left photograph in figure 6.9 shows the velocity vectors result-
ing from operation of a heater on the left wall. The upper right photograph
shows the temperatures at the computational grid points. The temperature of
hot fluid is represented by vertical line segments and the temperature of fluid
cooler than average is indicated by horizontal lines. 1In either case, the
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Figure 6.10.— Pressure cycles for square tank with wall

heater (0.4 rph).

length of the line segment repre-
sents the deviation of the temper-
ature from a reference value.

Each time the heater is turned
off, the reference temperature
used in the display is readjusted
to the value of the mean tempera-
ture in the tank. This is done so
that hot fluid can be easily dis-~
tinguished from cold fluid in the
displays shown. For comparison,
the velocity and temperature dis-
tributions arising from operation
of an internal heater are shown in
the lower two photographs of
figure 6.9.

Figures 6.10 and 6.1l contain
plots of pressure and potential
pressure decay for the two heater
positions. A steady spacecraft
rotation rate of 0.4 rph was
imposed. Additional parameters of
the calculations are indicated on
the figures. The notation

QUANTITY = 90 percent indicates that the tank contains 90 percent of the amount

of fluid it contained when full.
fluid removal from the tank.’

FLOW RATE = 1.5 1lbm/hr refers to the rate of
HEAT LEAK - 10 W indicates that heat is leaking
into the fluid from the exterior of the tank at the rate of 10 W.
heater is on it produces heat at the rate of 115 W.

When the
The pressure rises due to

heating when the heater is on and falls due to gas removal when the heater is

off.

Upper and lower pressure limits were imposed corresponding to data from
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portions of the Apollo 14 flight. The restlts in figure 6.10 were generated
using a wall heater, and the calculation represented by figure 6.11 was identi-
cal except for the use of an internal heater position. Comparison of the two
figures shows that there are no gross differences arising from the position of
the heater for the conditions of these calculations.

Figure 6.12 contains photographs showing velocity and temperature fields
produced by prolonged heater cycling of an internal heater with the spacecraft
rotating at a steady rate of 0.4 rph. The upper photographs were taken at a
time corresponding to about 8 hr after the start of the calculation and the
time of the lower photograph is 10 hr. The velocities remained small (less
than 10~" ft/sec) so that the stability criteria of the numerical method
allowed a large time step (0.5 min) in the integration. The total computing
time on an IBM 360-67 computer was 46 min. The photographs of temperature dis-
tribution on the right of figure 6.12 are somewhat similar to the assumed ini-
tial linear distributions’ used for previous calculations in this article. With
prolonged heater cycling during steady spacecraft rotation, it is seen that
there is a tendency for the hot gas (represented by vertical line segments) to
collect at the bottom of the tank in the direction of the center of rotation.
On the plots of potential pressure decay at the bottom of each photograph in
figure 6.12, in the lower two frames the time scale has been halved relative to
that in the upper two frames. These plots show that the cumulative rise in
potential pressure decay does not continue indefinitely when the spacecraft is
rotating. Instead a plateau is reached when the velocity past the heater has
built up sufficiently that the incoming heat is convected to other regions of
the tank rather than continuing to accumulate in a small region near the
heater. As this natural convection effect continues to grow, there is a
decrease in the level of the
potential pressure decay. In the
lower two frames of figure 6.12,
it can be seen that near the end
of the calculation the cumulative
increase in potential pressure
decay has resumed. This is prob-
ably due to the accumulation of
hot gas at the bottom, which
tends to counteract the driving
force of the natural convection
and reduce the velocity of flow
past the heater. The highest
level of potential pressure decay
reached in this calculation was
about 80 psi.

Velocity Temperature

Figure 6.13 shows the effect
of a change in spacecraft rota-
tion rate on the cumulative rise
in potential pressure decay. In
this calculation the spacecraft
was not rotating initially. The
Figure 6.12.— Velocity and temperature distributions cyclic heater operation resulted

after prolonged heater cycling at 0.4 rph.

10 hrs
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Figure 6.13.— Effect of spinup on cumulative rise in convection in the previous case con-
potential pressure decay. sidered. Furthermore, these larger

velocities persist rather than being

suppressed by accumulations of hot

fluid on the side of the tank toward
the center of rotation. Consequently, the potential pressure decay would be
expected to continue to decrease if the calculation had been continued to
longer times. The machine computing time on this run was 64 min. About two-
thirds of that time was spent in the part of the calculation after the change
in rotation rate. As a result of the maneuver the velocities became relatively
large (~0.005 ft/sec), and the size of time step required for numerical stabil-
ity decreased by more than an order of magnitude.

DISCUSSION

It is appropriate to discuss the probable effect of several approximations
that were employed in this investigation. Two-dimensional simulation of the
flow in a spherical tank was necessitated by the limited speed and storage
capacity of the currently available computational facilities. If a highly
stratified state is present in the tank with an appreciable fraction of the
oxygen at a temperature 10° or more sbove the average temperature, a small tem-
perature gradient will develop. Due to the low thermal diffusivity of cryo-
genic oxygen, such a nonuniform condition can persist for many hours if the
flow velocity 1is negligible. The fluid velocity induced by spacecraft maneu-
vering will lead to penetration of the hot fluid by cold streams and lengthen
the boundary between hot and cold regions. The enhanced temperature gradients
and lengthened regions of heat exchange promote a more rapid trend toward a
uniform temperature. The extent to which this occurs in a two-dimensional sim-
ulation should be indicative of the same trend in the actual three-dimensional
flow if the driving force is in the direction of the two dimensions considered.
There is no apparent reason to expect a large order-of-magnitude error in the
estimate of mixing effectiveness from the two-dimensional calculations.

It was not possible to adequately resolve the thermal and viscous boundary

layers that would occur in a real flow. Estimates based on the viscous flow
over a flat plate indicate that the boundary layer at the tank wall due to
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changes in rate of spacecraft rotation would be laminar. Also the boundary
layer would not encompass an appreciable fraction of the fluid in the tank for
periods up to 2 hr after a change in rate of rotation, if the fluid were ini-
tially at rest relative to the tank. During such times, the calculations show
appreciable mixing in the main body of the fluid due to interaction of the
acceleration field with the nonuniform density distribution in the stratified
field. Therefore, it is not expected that accurate treatment of the boundary
layer at the wall would appreciably alter our predictions of the response of
the potential pressure decay to spacecraft maneuvers. The thermal and viscous
boundary layer that develops at the heater was also not adequately resolved in
our calculations. However, the nonuniform temperature distributions produced
by the approximate heater simulation provide worthwhile tests of the mixing
effectiveness of spacecraft maneuvers.

An objection can perhaps be raised to the use of a coarse computational
grid spacing. Physical instabilities may develop in the boundary between hot
and cold regions of a moving fluid. Generally, it is not possible to distin-
guish such an occurrence from a numerical instability. Special methods that
have been used to control the numerical stability may therefore have eliminated
physically real effects. In that case, the calculations should provide a con-~
servative estimate of the mixing effectiveness of a spacecraft maneuver.

Because of the previous existence of numerical methods for computation of
fluid flows in rectangular enclosures, it was expedient to consider first the
flow in a rotating tank of sguare cross section. The coarse grid spacing and
the special methods employed to control stability may have obscured physically
real effects that would occur near the corners in an actual fluid flow in a
rotating enclosure of square cross section. The error from such effects would
be expected to grow with time and could be gppreciable for long computation
times. For the present purpose, omission of such corner effects is not objec~-
tionable since our purpose is to simulate the flow in a spherical tank without
corners. We have developed a machine program for computing the two-dimensional
flow in a rotating tank of circular cross section. Preliminary results from
that program were presented in unpublished reports at the MSC Cryogenics Sym-
posium. No gross differences were found in predictions of the mixing effec-
tiveness of changes in spacecraft rotation rate based on calculations for
square or circular cylindrical tank geometries.

The present investigation has been confined to large tank quantities
(large values of the ratio of fluid mass to the mass when the tank is full).
Unpublished work of C. K. Forester, D. D. Rule, and H. W. Patterson has shown
that the levels of potential pressure decay to be expected decrease rapidly
with decreasing tank quantity for values of tank quantity below about T0 per-
cent. This occurs because of the departure of the fluid state from the prox-
imity of the critical point as fluld is removed from the tank and the fluid
density decreases. At a tank guantity of 10 percent the properties of oxygen
are approximately those of a thermally and calorically perfect gas for which
the potential pressure decay is zero regardless of the degree of stratifica-
tion. Tor this reason, from the operational point of view, the response of the
fluid states to spacecraft maneuvers 1s of greater interest when the tank

quantity is large.
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CONCLUDING REMARKS

The effectiveness of rotational spacecraft maneuvers as a means for pro-
ducing necessary mixing in the Apollo oxygen tanks has been investigated.
Photographs of a cathode ray display tube have been presented illustrating the
convection currents resulting from changes in rate of rotation. and from natural
convection. Results have been presented showing the cumulative buildup of
potential pressure decay that occurs due to intermittent operation of the
heater used to maintain the pressure in the tank during removal of fluid.

There are several significant contributions from the present investigation
toward a better understanding of conditions in the Apollo oxygen tanks during
flight. We find that the mixing due to interaction of fluid density gradients
with the acceleration field from rotational spacecraft maneuvers takes place in
times that are short compared to those reguired for mixing due to wviscous
effects. For example, unpublished results from water tank simulation experi-
ments of J. F. Lands, Jr., and R. C. Ried, Jr., indicate that times of order L
to 20 hr are required for the effects of a spacecraft rotation reversal to
spread throughout the bulk of the fluid. In contrast, our results, which
include the effects of density gradients, show considerable mixing throughout
the fluid volume in less than 1 hr. For reasons previously discussed, our cal-
culations represent a conservative estimate of the amount of mixing to be
expected 1in actual flight.

The levels of potentlal pressure decay to be anticipated according to our
calculations are in reasonable agreement with previous estimates from Apollo 12
data and stratification analyses. We concur in the conclusion that dangerous
levels of stratification will not occur with mass flow rates and acceleration
fields corresponding to past and anticipated Apollo operational practices. If
as a result of departures from usual practice, an unacceptable level of strati-
fication is believed to exist during flight, we find that return to a safe
level can be achieved by mild changes in the rate of spacecraft rotation. A
change in rotation rate of three revolutions per hour produces a reduction in
potential pressure decay by a factor of 2 or more in 1 hr. Again, this repre-
sents a conservative estimate.

In the event of future space-flight applications that require scaling of
the Apollo design with respect to time or size, the computational methods of
this report are applicable for estimating the levels of stratification and the
response to spacecraft maneuvers to be anticipated.
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of information concerning its activities and the results thereof.”

— NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and
technical information considered important,
complete, and a lasting contribution to existing
knowledge. - -

: TECHNIC-AL NOTES: Information less broad
in scope but nevertheless of importance as a
contribution to existing knowledge.

TECHNICAL MEMORANDUMS:
Information receiving limited distribution
because of preliminary data, secunty classifica--
tion, ot other reasons.

CONTRACTOR REPORTS: Scientific and
technical information generated under a NASA
contract or grant and considered an important
contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information
published in a foreign language considered

_ to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information
derived from or of value to NASA activities.
Publications include conference proceedings,
monographs, data compilations, handbooks,

- sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION
PUBLICATIONS: Information on technology
used by NASA that may be of particular »
interest in commercial and other non-aerospace
applications. Publications include Tech Briefs,
Technology Utilization Reports and

. Technology Surveys.

Details on the availability of these publications may be obtained from:.

SCIENTIFIC AND TECHNICAL INFORMATION OFFICE

NATIONAL AERONAUTICS AND SPACE ADM|N|STRAT|ON ’
Woshmglon,DC 20546




